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ABSTRACT
S

This paper describes the method of designing distributed networks consist-
ing cheifly of distributed coupled lines.

Coax:al filters are the representative ones of distributed filters. They
are of practical use because of their simplicity of construction and design procedures.
Ong the other hand, it is sometimes difficult to obtain those of desired characters,
owing to many restrictions. Coupled line fiiters came into use to supplement these
drawbacks and displayed their merits as narrow band filters. As they grew familiar,
varieties of networks were found, and have now significant uses in microwave bands
as strip-line filters.

iii
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Introductorz

I. 1 On ingredients

This paper describes the method of designing distributed networks consisting
chiefly of distributed coupled lines.

Coaxial filters are the representative ones of distributed filters. They are
of practical use because of their simplicity of construction and design procedures.
On the other hand it is sometimes difficult to obtain those of desired characters,
owing to many rostrictions. Coupled line filters came into use to supplement these
drawbacks and di=played their merits as narrow band filters. As they grew
familiar, varieties of networks were found, and have now significant uses in

microwave bands as strip-line filters.

In early stages of theoretical treatments of distributed networks, the
elementary method was to replace lumped elements by corresponding distributed
elements. The treatment has shown a great progress, since P.I. Richards
introduced a parameter p= j tan (2rf2/ c) which corresponds to p=j2n{in lumped
networks. This was done by making all line elements of equal length. In this paper
also, the technique has been used to systematize, even though partly, the theoretical

treatments of coupled-line filters.

This paper may be roughly divided into three parts. Chapters 2 and 3 treat
with those networks consisting mainly of distributed coupled lines combined with
one or two coaxial elements. The characters of the networks are studied with
reference to equivalent networks, and it is aimed to have a whole view of the
characteristics of coupled-~line networks. Chapters 4 and 5 describe methods of
obtaining coupled-line networks through transfromation, using equivalence
relations in preceding two chapters, from the networks designed for lumped constants.
Chapters 6, 7, 8 and 9 treat the extension of coax extraction, proposed by Richards,
into extraction of coupled two-wite lines, and explain that this procedure will be a
method of synthesis in coupled-line networks. Finally some experiments are shown

in addition, to see the validity of theoretical calculations.

Studies on coupled-line networks were carried out by Hirotal. Moriwakiz.
Uchida3. Nagai and Sato4. This paper has its bisis on the earlier studies due to

these authors, and has been developed by the writer.

Following sections describe certain items that will be of reference in '
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reading this paper.
I. 2 Frequency transformation into distributed networks

In distributed networks, the frequency f comes into expression in a form
tan (2x £2/c) or tanh (o +j2x £1/c), because lines are used as elements. Sometimes
cosines or sines may appear, but they may be transformed into tangents. Therefore,
the characteristics of distributed networks are periodic functions in f and will
repeat with frequency. If th: lenghts (1) of the line element are scattered, the
periuds of repetition vary frcm element to element, and the characteristics of
the whole network will have a complicated periodicity. As a result, it will be
very difficult to compute the characteristics or to have representations in
equivalent networks. From this view, Richards5 and Matsumoto6 proposed that
{a) lengths of elements should be all equal
{b) a frequency parameter

P =) tan Ui 1

or

p= tanh (a+jB)t = tanh(a+j 221 4

should be used.

As a consequence of condition (a), the periodicity becomes so simple that
the period is 2v in 2r fl/c. On the other hand, condition (b) enables the corres-
pondence of 2vf and tan(2w ££/c), and one can easily consider a network of lumped

!

constants to be that of distributed ones by merely replacingp =jZ«f by p.

Thie proposal has made the theoretical trecatments of distributed networke

very easy, and caused an abrupt progress of distributed network theory.

The same is in the treatment of coupled line filters and the frequency
transformation if used throughont this paper. In making actual networks, one
need not always use elements of equal lengths. The characteristics for unequal
lengths of elem. _nts can, to a certain extent, be interprated from those for equal

lengths.
I. 3 Coaxial {filters

Since the proposal of the frequency transformation concerning theoretical

treatment of coaxial networks, developments were made, chiefly by those of our

cou.mtx'y7 - ”. The outlire will be presented here for reference.
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The theoretical developments have been made under the conditions

(1) all elements are of equal length, and the frequency transformation is

used, as described above.

(2) In order to avoid multiple coaxial structures, series elements will not
be used, shunt and cascase connections will be used instead. Thus
the three kinds of elements are of most significance:

(a) inductance Wp
(b} capacitance W/ P
(c) unit coax

Examples of actual networks are:

(i) bar network
{ii) simple open (or short) branch network
(iii) tree-and-branch network

(iv) loop network (tree-and-branch network in a broader sense)

One can naturally assume parallel or cascade connections of any networks above
mentioned.

I. 4 Richards' key theorem

Richards' key theorem and coax extraction will be mentioned here, since

they have some concern with the extraction of coupled two-wire lines.

Richards' theorem says
"If Y is a pd "itive real function, then
pY(p)-p;Y(p))

= Pl>°
RSt (T ()

is also a positive real function.
Let P 1, in particular, then one has
"If Y is a positive real function, then
PY (1)-Y(p)
Y. =Y(1)

! pY(p) - ¥(1)
is also a positive real function. Here Y, is the remainder after extraction of a unit

coax of characteristic admittance Y(1) form Y, and it is proved in this theorem that

this Yl is a positive real function (to be two-terminal admittance).

o=
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I. 5 Construction of lines

A coaxial filter . made of a combination of coaxial lines, but theoretically
it may be made of open two-wire lines. In short, it is a combination of single-
phase lines. But open lines are apt to interfere with other systems of lines

through radiation, etc., and corsequently coaxial elements are used in filters.

A coupled two-wire line may be shielded or open, and also may be of any
shape. Theoretically this does not matter, but shielded lines should be used in
practice. In this paper, a coupled two-wire line is represented by two wires
over the ground.
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CHAPTER I. Equations of transmission in lines of parallel wires

This chapter described equations of transmission of distributes coupled
lines consisting the major part of coupled-line filters. Various manners of
representation have been made by various authors. &3 1213 Here equations
are presented, with coupling coefficients and symmetry coefficients, that would

be of use in describing the characters of coupled-line filters.

1. 1. Equations of transmission in multi-wire lines.

Take any point X on a line of parellel wires stretched over the ground,
let the effective values of voltages and currents be [V}and[ I] respectively, and
assume the direction of x as shown in the figure, then the following equations will

hold between the voltages and currents:

-.g‘_[v]= (z){1] (1.1.a)
-5 1= ()] (1.1.b)

where[2] and [ Y] are impedances and admittances of the line per unit length.

If the line is lossless, one may use the inductance [L] and the capacitance
[C]per unit length in Eq. (1), so that

g V1= jo (L] (1] (1.2.2)
-~ (1= v [cllV] (1.2.b)
Differentiate Eq.(l.2.a) in x and put it into Eq. (1. 2.b), then one has
2
4 [Ee?[L)c]v] (1.3)
dx
There is a relation
(L)[c]= —‘;lz (1] (1.4)
o

among the velocity ‘.’o. of propagation of the electromagnetic wave, [L] » and [C].

so that Eq. (1. 3) can also be written 2
2
d
- 3 [V]= £ 3 [V] (1-5)
dy v o
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Here define B by
w/ Vo= B (1. 6)
which is called the phase constant of the line.

The solution of Eq.(1.5) is in general given by

V = [aelPapeipX] i1.7)

where a and b are constants of integration to be determined from boundary conditions.

Combining the above equation and Eq. (1. 2.b), one obtains

- % [v] = - 58 [ae . be-iPX] = ju[ d][1] (1.8)
which yields currents, with notice to the direction of X
1)+ L] [ae9PX - beifx] 1.9)
o .

Eqs.(1.7) and (1.9) are the fundamental equations for the voltages and currents.

To determine the constants a and b of integration. let the voltages and currents
at x=o be [VO]and [Io] respectively, then from Eqs.(1.7) and (1.9), one has the

relations

[ast] = [v.).Joob) = v, [1]fe] e10.3)
[Za] = [vo] v, [L][Io] | [zb]=[v°] -V, [L][Io] (1.10.b)

which lead to

and finally to

1 4l vo Bl 1w - w3l

= [v o] cos Bx +j v, [J]ll‘ro‘ sinfy (1.11.a)
{1] = [Io] cos PX +j$—° [L]-l [VJsin BX (1.11. b)

l¢2. Line constants of multi-wire lines

In the equations (l.11) of transmission, primary constants Vo [L] of the line

appear in place of the characteristic impedance W of a coaxial line. Rewritevo [L]
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by Eq.(l.4), then one has

v [L)= Ve Wt [l= 637! [Ll= W)

(1.12)

Here new line constants / W should be defined which will be called the characteristic

impedance of a multi-wire line. Making use of this quantity, Eq. (1.11) will read
[v]= [Vo] cos Bx +[W][I] j sinpx
1= [Io] cos By + nW]-l [VO]j sin By

This form of equations of transmission will be used hereafter. Entries of [W]can

be written

(1.13.a)
(1.13.b)

- -
w
Wy Wiaeeo W,
Wy Wopeeo W
w)= . . 0 {l.14)
_wnl wnZ wm'x_|I

The law of reciprocity should hold in the establishment of Eq.(l.1), so that [L]
and [C]ahould be symmetrical matrices, and consequently [W] should also be a

symmetrical matrix. That is,
= W..
ij Jji
and
- i
i Wizee Wy,
le sz ag Wzn
[w]= Q O O (10 15)
L_wl wZn wnn_
Rewrite this, for the sake of convenience in practical use, in the form
! Wi/ W oo Wiy Wy L kypeeekyy,
Wiz W Yoo Wyeee Woor Wi kg dp ceekpy
[W]=Wu . 0 0 # w 11 . . . (ll 16)
Wiy Yo ¥n YaYn kin *zn'"dn
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Here are introduced d; and kij which will be called symmetry coefficients and
coupling coefficients respectively. W, is the self characteristic impedance of
the first wire.

In the following sections are obtained equations of transmission using

these line constants for 2-wire lines and 3-wire lines.

1l.3. A parallel 2-wire line.
(A general 2-wire line) Define voltages and currents of a parallel 2-wire line as

shown in Fig. 2. Here one has

Vi
[V]= Vz Vo= -

_ 1.17
- [11] . I10] ol
1, o |1

which will yield. upon substituting into Eq. (1.13),
V1=V10 cos Py + wll(IIO + klZ Izo)j sin pl

V,=V,, cos Bx + W, kI 0+d,1, ) j sin Bt

1i'712°10
= 1 .,
1,1} cos Bx +——; (dzvlo-kleZO)J sin Pt
Wilda-kyp )
= 1 ) o
L7l €08 B+t (- K1V ¥V} § sin P! (1.13)

Wi(dakyp )
These are the fundamental equations of transmission in 2-wire lines.
(Case of Symmetry) If the line is symmetrical with respect to the ground, W11=sz
so that

dp* Way/Wn =1 (1-19)

and therefore the fundamental equations can be written
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V1=V10 cos Bl + “"11(110 + kl2 IZO)j sin pf

V2=V20 cos Bl + W“(klz I10 + IZO)j sin pl

- 1 o
I =ljgcos Bl + ——————— (V) -k ,V,0)jsinpl  (1.20)

wyp(1-kpp)
1

I2 = IZO cos Bl + >
Wi(1-kp7)

(-k;pV 0+ Voo J sin B2

(NOTE) W“. dz and klz have following relations with the balance and unbalance
characteristic impedances (Wb and Wu) and the degree of symmetry 6:

Ik
N 12
dy-ky,
v, 1("2"‘122)
w,= W, {0k, ¢ @k} W=
1ok, + (d-k ;) (1.21)

These quantities are encountered with inthe line equations, as line constants,

obtained by the method of symmetrical coordinates.

In other works, upon substituting these relations into Eq.(1.18), one
will obtain a result perfectly coincident with that obtained from the method of

symmetrical coordinates.

Rewriting the above relations, one has

_ 2 2
wu-wu+wb6/(1+6)

2 ., _ 2
LATL wu-wba/ (1+6)°, w..d -wu+Wb/(1+6) (1.22)

12° 1192

so that
W (k= W 6/ (146), W, ldyk ;) = wb/(1+s) (1.23)

Since W., 6 and W, >0, Wu: Wbé/(l + 6)2, one has the restrictions

b 11

1, d, 2 k2 0 (le24)

l.4. A parallel 3-wire line

(A general 3-wire line) In a parallel 3-wire line, one has similarly,
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1= Vlol cos Bt +Wn 1 klz k13 IlO. J sin pt
2 V2o kip 4 k3| %0
| V3 | V3o | *13 %23 43 | ']
S - - (1.25)
I | =f1, | c= 82 +|W_| [1] =, | |k13| Vio | Jsinpt
L o =lip 1d, I-lep5 11V 20
EIEEN | fepgl-lip 31 1ay] V30

Wl = w,[1 Kk, k13.[1]=[d2 kj 5]

k d, X k,, d

12 23 23

3
k)3 ka3 43
where |k| means a minor determinant.

{Case of symmetry) If the line is symmetrical with respect to the ground, one has

W= W= Way (1226)

so that

d,=d

2 1

i (1.27)
Furthermore, if the wires are symmetrical to one another, one has

W,,=W..=W

12 13- "23

kjp=kj3=kyq (Eko) (1.28)
so that

Wl= w,,[1 % Kk

k1 k

[+ [+

k k1

o ©0

14k i -k -k 1(1.29)
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These relations will be used in Eq. (1.25).

11

(Case of symmetry with respect to wire 2) If wire 1 and wire 3 are symmetrical

with respect to the ground as well as to wire 2, one has

d, =1
2 (1.30)
k) = kyg
so that
Wl= w1 k), Ky
ki 4, k2
k13 kg !
At 1 T 2 _ 2 T
Bl = ——d, - kjp" =kpplinkgy) k" - dpky, (1.31)
1
2
“)p(1-k)4) -k 3" k) ,(l-k)q)
Kk, .2 - dk,, Ky o(lekia) d - ko2
K1z - 93 ¥pll-kyg) dp -k |
¢ 2
A= (1-k3){ d,014k),) - 2 Kk,,%}
Take in particular a value of dz:
d, = (1 +k13)/ 2 (1.32)
then one has
W= W, [t Xy kg
klz (1+k13)/2 k),
kig kyp 1
- 1 +k 7
wl-le =1, | 1#kyy 2 2 13
w73 T ket Rl kg kg ((1033)
2
~kja(l=ky,) ok)y  =kppll =k;4)
1+k 14
K, 2uk,  —13 ppll-k;q) Mas K,.,°2
12 k3 12
k. 2 2 =
. ‘”kla’z 2
A' = (l-kIB) _;_ - Zklz
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These relations will be useful in reducing the calculation to that of 2-wire lines,
as described later.

For a larger number of wires, one can similarly make calculations by the use
of the equations (1.13) of transmission, but the examples will be omitted because
of no direct necessity.

CHAPTER 2. Simrie networks made of coupled two-wire lines.

Here will be mentioned those networks consisting of a set of a coupled two-
wire line and gimple impedances, as simplest examples of coupled-line filters,

along with their equivalent networks and the relations with coaxial filters.

2.1. Sirnple networks made of couplad two-wire lines and their four terminal constants.
A 2-.wire line over a ground has, so to say 4 pairs of terminals, if one takes any
terminal and the ground to maxe up a pair of terminale. Taking any two pairs of
terminals &as input and output terminals and treating the remaining pairs of terminals
in a certain way, one has a four-terminal network. Networks of various properties
will come out depending on the treatment of the terminals, but hiere only the cases
will be considered where the terminals are open circuited, connected to the ground
directly or through simple impedances. They are shown in Tables 2.1 ~ 2.5.
L's and C's in the tables show impedances jWtanp! and -jWcotp! respectively. No
citations are made to those networks having complicated impedances or parallel
impedances at the input or output terminals.

The four-terminal constants of these networks may be obtained by substituting
end conditions into the fundamental equations of transmission of the two-wire line,
described in section 1.3. For the sake of simplicity, the line is assumed to be
symmetrical, and Eq.(l.20) has the following form

V= le cos B1 + WO(Ilo +k120)j sin pl

V, = V,,cos BL+ W _ (kD) +1, ) j sin BL

1 (2.1)
cos L + (Vlo - szo)j sin P!

2
Wo(l-k )

I, =1

1 10

1

I, =1,, cos L + {- kV,ot VZO) j sin p4

2
Wo(l-k )
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The notations A°P, A'A, L'P, H'P, B'E and B'P in the tables signify the types
of the networks of all-pass, all-attenuating, low-pass, high-pass, band-stop and
band-pass.

Those networks marked with ¢ and X ) have already been reported1 Z2 13

by other authors, but they are cited because they are necessary to obtain equivalent

networks in the following section.

WU and WB in tables 2.4 and 2.5 are given by Eq.(1.21), and since the line is

assumed to be symmetrical, they are in the relation

Wp=2W_ (1-k) W,= i W_(1 + k) (2.2)
2.2. Equivalent circuits

Equivalent circuits are shown in Tables 2.6~ 2.10, which are obtained from the
four-terminal constants described in the preceding section. In the tables, the left
columns show coupled-line networks, the middle columns the equivalent circuits
given in lumped constants, and the right columns the equivalent networks made of

coaxial lines (not always of convenient forms for realization).
The frequency parameter p' in the equivalent lumped networks stands for
P' =jtan (L/2)
and is related to p by
L}
e 22
H'p'z

This parameter comes in when cascade coaxial lines (unit coax) are represented
by lumped constants, and may seem to be unfavorable; but it will not appear

in the overall network characters.

One may have a rough aspect of the properties of the networks through their
equivalent circuits. Their characteristics will be studied in the following sections.
Since those networks marked with asterisks have already been reported in detail,
only others will be studied.

2.3. Low-pass type networks

The networks (b) and (f) in Table 2.6 are of the same property, and are low-pass
filters. The equivalent network is like Fig. 2.2; through which the charactsristics
will be studied. This i3 one of the simplest networks among coaxial filters, and is
reported in many articles, so that only the network constants will be referred to

here.
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Image impedances (Z oy’ Z Q) and the transfer constant 90 are given by

1

Z,=W

1
a*V¥,
Mmlz Vi-qg?

where
2 2_ 2, 2
“yE W/ W, -at=p e
In the networks (b) and (f) used in table 2.6, those values should be used that are
shown in the following table. These networks have

2
w
l'l-1

and are "constant-k" type filters. w, is the cutoff, and there are no attenuation

poles. The characteristics are shown in Fig. 2.3, with respect to f.

It can be easily seen from the equivalent circuits that the networks (d) in table
2.6 and (a) in table 2.9 have 2lso the same character. These are of two-element
structures. On the other hand, the networks (b) and (f) in Table 2.6 are of 3-element
structures and therefore the formers are degenerate filters each with one super-
fluous element. As for low-pass filters, therefore, the latter two networks are

more significant than the formers.

2.4. Band-stop type networks

In contrast to the networks that are insignificant because of degeneracy
described in the foregoing section, those networks of (c) and (e) in Table 2.6
act as 3-element networks, and have band-stop characteristias. They are
significant since they can have narrow band characteristics, by making the
coupling coefficient smaller. Let the image parameters be given by
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p2+wf

“o P pz +U_T

then their relations to line constants are shown in the following table.

In the two filters above, if one makes k smaller, one will have w , ~ w

1= Yo=®p
and can make the stop band narrower. It is easy in practice to make the coupling
coefficient smaller, because it is only needed to increase the separation of the wires,
and a narrow band-stop filter will result easily. Detaiis of experiments wil! be

described in Chapter 10, section 1.

The network (b) in Table 2.9 is also of band-stop type. Its equations of
characteristics are:

14k 0,2 pl+w?)pited)
2 1 3
Zo1™ [ W W 2 2 Z PR AL
a 1"‘“"1“’3 (P +“’z )(P +“4)
2
l1+k ul" (pz+uzz)(pz+w32)
Z .= /W W

2 é & 2 2 , 4
° e l-k wywy (p +w,) (p +u:)

z 2 z. 2..,2. 2
tanh 0 = Wo(l-k) w W, (p +w3)(p +u4) 2
o z 2 ¢ 2 2z P
W({l+k) w5 (p+w1)(p +uz)
1
2 2 w
o WS 2T W
(1-k ml + —w-° °
..,;’-. w ,w42= L { (1+k)+-%}v—
Wo(l-k) 1=k | o

This is a network of BE-4.
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If,in particular,

W.F W W W
1 2 or

3 4

it will be of BE-2. The cordition thereof is to cetermine W such that satisfies

w l1+k 1+k
Wt Tok @k-NergpTy

The characteristic is alike to that of the coaxial network shown in Fig. 10.2. It is
not suited for narrow bard requirements.

2.5. Derived-M type hign-pass filters

The networks (c) and (e), Table 2.7, have forms of inverted-L type high-pass
filters with single phase lines attached, as seen from the eql'xivalent circuits. One
may consider that they have the charactistics of HP-3, but under certain conditions
thay become HP-1. The conditions for HP-1 and the characteristics are shown in
Table 2.13. Fig. 2.5 is an example of the frequency characteristics of the resulting
network.

The networks (b) and (f), Table 2.8, are combinations of derived-M type
high-pass filters and transformers. Their equivalent circuits and expressions of the

characteristics are shown in Table 2.14. These networks are of speci.il inte-est.

2.6. Band-pass filters

The networks (b) and (f), Table 2.7, have forms consisting of all-attenuation
networks cascaded with all-pass single phase lines, as seen from the equivalent
circuits. The expressions for their characteristics are given in the table below. The
cutoff frequencies w, and w 2 will approach to each other as the coupline coefficient
k tends to zero, and a narrow band will result. There are nq attenuation poles. The
circuits at the bottom of the table 2.15 are also equivalent to those at the top.

The networks {c) and (e), Table 2.8, have also band-pass characteristics, and
their equivalent circuits can be given as a combination of an L-type network and a
transformer. The constants are as given in the following table (Table 2.16). As in
the preceding case, w, will tend to w, as k tends to zero, and a narrow band will
coma out. One will obtain the simplest 3-element band-pass filters, as shown in the
bottom part of the table, if the condition W=W k (in the network (c), table 2.8) or
Wk= W (l-k ) (in the network (e)) is introduced in particular. Fig. 2.6 shows an
exlmple of the band-pass characteristics obtained. The network {(c), Table 2.9

is also a BP-2, and its characteristics are given in the following equations
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. WHW-KT) 1k, pitwl
ol /"o W W T pz~|u.»lz

z
w W (1-k%)) 14k 2
z IJLW(1+ 0 ){1+ o 0l P
o2 J o L *uf)(pz*ﬂf)

W(i+tk) W +W (k%) P o’
tanh 8 = wo 2 "17' 4 1z
ey W LT e,
W L4k
“lz- °

2WHW (1-k)

W _(1-k)
o e {rez 2}

This network, like coaxial networks, is not suited to meet narrow band

requirements.
2.7. Equivalent circuits for those networks with unsymmetrical Z-wire lines.

In preceeding sections, those networks were examined, that are built up
with a symmetrical 2-wire line and one more element. A 2-wire line can also be
unsymmetrical, and the equivalent circuits will be obtained for the networks with a
2-wire line and an element. Ozaki and Ishii 19

networks, with expressions of odd or even transfer impedances. but here the express-

obtained some special cases of these

ions will be given in coupling coefficients and symmetry coefficients for more general

cases, because of necessity in the following chapters.

Now, one can use the fundamental equations of transmission Eq. (1.18) in case
of an unsymmetrical 2-wire line; using Wo. k, and d in place of Wu. klZ and dz. the

equations read

V)= V) cos Bt + W_ (Lo +k I,0) j sin B

v,=V, cos ﬁ1+W°(kIlo+dlzo)jsinﬂl

2 20
= 1 .
Il- 110 cos ﬁl+_;:_('d_.]-<-z-)- (d Vlo-kvzo)jsmbl

1 .
I, =1, cos pl + (-k V,. +V,__)jsin pl
2™ “20 _wo( ary 10 Y20
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One has only to put conditions of termination into these equations, determine 4-term-
inal constants, and find out equivalent circuits. The equivalent circuits obtained are
shown in Tables 2.17 ~ 2.19, along with network constants. Those equivalent networks
in Tables 2.6 ~ 2.9 are nothing but those in Tables 2.17~2.19 with the condition,

d = 1, of symmetry of the line.

2.8. Transformations from coaxial networks inco coupled line networks.

Coaxial networks are of the most significance among distributed networks, and
a good deal of study has been reported on the coaxial networks. They are practical
because of the simplicity of the construction of the lines. On the other hand, certain
inherent restrictions do not allow one to obt ain networks of versatile characteristics.
Some trials were made by Ozaki and Ishii, to adopt a coupled line element, in order
to make supplements to the defects of coaxial networks. Their report is excellent.zo
Some of their networks are shown in Table 2.20, in terms of Wo. d and k, to meet
with this paper. The boxes in the left column of the table represent unit coaxial lines.
Those two networks at the lower half of the table have transformers, and if the trans-
formation ratio be taken 1:1, one would have k = 1 or d, and consequently &= 0 or
@, and the coupled line should take a double coaxial configuration.

Ozaki and Ishii made no comments on the transformation of tree~-and-branch
networks with attenuation poles. One can have a transformation into coupled line
networks, even in the presence of attenuation polea, through the use of two trans-
formations described below. In the two networks in Table 2.21, W  and W", are
of like magnitude, but kZ can be made as small as one wishes. Therefore there is
a possibility of easier realization in the form of coupled lines, even if the impedances
of the resonant lines are of extreme magnitudes in cass of coaxial networka. These

transformations are useful in making attenuation poles.
2.9. Brune Sections

Lastly, a unit loop will be considered. It consists of 4 coaxial lines in loop
to realize a Brune section with a negative inductance. Its equivalent circuit is, as
in the figure, a cascade of a Brune section and a unit coax \JJ .
Take

z=w_/p

in the network (g), Table 2.18, then one has a network shown in table 2.22, which is
the one under discussion. Taking off the ideal transformer, one will find that the
equivalent network will be the same as that of the unit loop. Conditions of equivalence
are also shown in the table.
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Example of a network having Brune sections.

Take a numerical example given by Ikeno in his report, and here will be shown the

transformation into coupled line configuration.

Ikeno gave an effective transfer coefficient S such that

2000 p* (p%+ 0.87)%
ST =14+

2 + 2.25(p2 + 16)2

The realized network has negative capactances as in Fig. 2.10(a). Transforming
these negative capacitances into series inductances by Kuroda's. method17. one will
have Brune sections. By further transformation, unit loops will come out and the
final network takes the form Fig. 2.10(c).

Brune sections in Fig. 2.10(b) may be substituted by coupled two-wire lines,
using the relations in Table 2.22, resulting a network Fig. 2.11.

The tranamission characteristics have been reproduced from the original

in the reference (7).

The tree-and-branch type coaxial networks can be transformed into coupled-
line type ones by means of combinations of the transformations Table 2.20, 2.2l and
2-22. As regards to the construction itself, the coupled-line type ones may be more
complicated than the others, but may sometimes be made up with elements of easier
realization.

As stated above, it has been shown in this chapter how the equivalent networks
can be obtained, and how the action of line elements, especially the coupling, take
part in the characteristics of networks. Novel networks have been studied of their
properties in detail, some of which may be of interest. The equivalent networks
are represented in coaxial networks, so that one can also transform various coaxial
filters into coupled-line type filters, if he has transformations from coaxial into

coupled=-line networks.
CHAPTER 3. Simple symmetrical networks made irom three-wire lines.

Take a 3-wire line, which has one more wire than a 2-wire line, a different
network will be obtained as compared with that having a 2~wire line. Only the case
of symmetrical networks will be studied, for the sake of simplicity, because the

structure of a 3-wire line is complicated.
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3.1. [Equations of a coupled 3-wire line

As described in chapter 1, the equations of transmission of a coupled 3-wire
line are given in Eq. {1.13):

[V]= [Vo] cos Bl + [W][Iolj sin ﬂl}
(3.1)

[I] -[IO] cos f1 + IWTI[VO]J sin pt

where [W] is the characteristic impedance of the 3-wire line. Only the case of
symmetry is under consideration, so that one may assume a structure in which

wire 1 and wire 3 are in symmetry with the ground with wire 2. Thus Eq. (l.32) comes
into use:

1 ky k, -I
14k
2
(W= W), |}y —= Kk
kK 1
(1+k 14k ]
2 .2 2 5, | L
0 —7 K -k -ky) K-k, £
W] = V}ITE —k, (1-k,) 1- k7 -k, (1-k,) (3.2)
2 14k, W,
k) -k, = -kyli-ky) -5
L+k, )2 ;
o= “"“z’{—z— - “‘1}

Equations of the network will be obtained from the above equations by putting
terminal conditions of the line ends into the latters.

3.2. Lattice representation of symmetrical networks.

In treating a symmetrical network, it is more profitable to study the matter
on the equivalent symmetrical lattice network.

The fundamental equations of a symmetrical 4 termin~l network (A, B, C, A),

are , .
= t

V, =AYV} +BI,

(3.3)

' '
'
I1 = CVz ‘P‘AIz

which may be rewritten
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v!i+Vv) vi-v)

2. L-(A+1). L z-l_(A-l) (3.4)
] -I' C Il +I' C

-5 1 th

These impedances give just the elements of the symmetrical lattice network. In the
reverse way: if the voltages and currents of the lattice network is known, one can
obtain the elements (Za and Zb) of the equivalent symmetrical lattice network; that

is:

v' v' v'_v'
1 1+ 1 a.py= L 2 3.5)
Zag_c_ (A+1l)= -q—:jf—, Zb! C(A 1) Ii"'xz' (

3.3. Z‘ and Zb of symmetrical networks made from 3-wire lines.

Make 2 symmetrical network, with input and output terminals on wires 1
and 3 on the same end of the line as shown in the figure, then one can obtain Za and

Zb. elements of the equivalent lattice circuit, in the way described in the foregoing
section.

Substitute voltages and currents of Eq. (3.1) into Eq. (3.5) (pay attention to
the directions of currents), one will obtain
V.-V

1- VY3
“T 1
_ W -kl p (Vg - Vag) / (I - 130) (3. 6a)
vlo v30 e
1+ —E =
Wilt-k) Thp-13

In this expression, (Vlo - V30/ (Im - 130) is determined by the treatment of the line
end. Assume that the treatment is symmetrical with respect to the ground as well

as to wire 2, and write ( le - v30)/ (Ilo - 130) =2 o then one has

a
2 = Wll(l-kz)p+za°
a Zaoop (3o6b)
”’W_(l'k")"
12

which is equal to the input impedance of a line with a characteristic impedance
Wl 1( l-kz) whose far end is terminated in Zao'

Now, an expression for Zb will be obtained. Eq. (3.1) may be written as
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+ ' 4
v1 v3 \10+v 14-k2

30 .
2 3 cos ft +Wu{ 2 (110+I30)+k1120}15m31

1+k
2
Vz Vzocos Bt +w11 {kl (1104'130)4'2— Izo}jShlBl

1 2, V10 Va0
I AT = (L +1,0) cos Bt + o {(1 - k) ——5—— + 2k (1 - kz)Vzo} j sin Bt

V. +V
1 10 30 2
= - - —————— -
 § I2 cos 1 + { kl(l kz) ) +{1 kz) V20 j sin Bt

2

1+’
A'(l-kz){'_z- *2k1 }
. (3.7

With the substitutions

Lth=L, LotlyptL, (3.8)

Eq. (3.7) may be rewritten:

Vb = vbo cos Bf + Wo (1bo +k 120) j sin B
V2 = V20 cos B{ + WO (k Ibo + 120) j sin B¢
(3.9)

Ib = Ibo cos BL +

1
(V. -kV_)jsinpe
Wo(l-kz) bo 20

I =1 cos B +

2" Ly (-k V. + VZo) j sin p2

1
w (l-kz) o
o
This is identical with the equations of transmission of a symmetrical line having a self charac-

teristic impedance W, and a coupling factor k., Therefore one can apply the same technique

of calculations to Zj, as that for networks with coupled 2-wire lines, decribed in the preceding
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chapter, Here, Zb is obtained as:

V. +V \Y
z 1 3

B ———— 2 ———
b I1 + 13 lb
TABLES 3.1 and 3.2 show Z A and Zb of symmetrical networks consisting mainly of a

3-wire line, combiined with another element. These values were obtained as described above.

3.4. 3-element networks

Varjous networks will be obtained by choosing Z in the networks shown in TABLES 3.1
and 3.2. Here the simplest cases will be considered, Z means an opencircuit or a ground-
connection. One may naturally expect 3-clement networks, but some may be degenerate. If
the both ends of wire 2 are open-circuited or ground-connected at the same time, the wire be-
comes degnerate; such ones are excluded. The following TABLE shows networks thus formed.

Networks (4) and (5) of this TABLE are very alike to networks (b) and (c) of TABLE 2,10,
and will be identical if one takes k = g (kl = 0). Networks (6), (7) and (8) are degenerate,
being 2-element networks, and do not have advantages of a 3-wire line. The network (2) will

be examined in the next paragraph, and the networks (1) and (3) in the next to next.

3.5. Low-pass filters

The network (2) in TABLE 3.3 is, as can be seen from the equivalent circuit, a low-pass
one, with a constant -k image impedance and a derived -m attenuation. At this point, it has
the same property as the network (b) in TABLE 2.10. The symmetry coefficient, in TABLE
3.3, takes a particular value of Eq, (1.31). Let it be d12‘ in order to keap generality, then the
equivalent network should be corrected as in Fig, 3.6, and its image parameters are obtained

as follows:

z =[22Z =W — 2 {d12(1+k2)-2kf} 1+ 5 P
d12(1+k2)-2k1

2 2 2
- + -
- 6, . z, ] d,(1-k) /2k1p/ d (1 +k) ~2k;
Wtz / 2 2 2 2
+ -
b 2k} L+2k) p/ d(1+k) -2k
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2 .2 2 2
RY = Wy g {da,0+k) -2}

2
d12(1 + k2) -2kl

1 2
2k1
2
T
d12(1 - kz)

The advantage of this network is that w, can be made greater easily by making kl smaller,

3.6. High-pass filters (1)

The network (3) of TABLE 3.3 is one of h'gh-pass type. Generslize the symmetry fac‘or

as d 12 and the equivalent circuit goes into that shown in Fig. 3.7. Its image parameters will
be obtained from the equivalent circuit as:

' P
2" Y1 “'k:) - 212
2k; 1+p /wl

60 l-k2 -LZ
tanh ?= T+ & (1+ 2)
2 @,

2
' = -+ =
A d12 (1 k2) 2kl
2 0.2
© A /2!(1

The factor (1 - kzwkl + k2)- in the expr~ession for tanh (90/2) is smaller than 1, so that there
are no attencvation poles. Ii one transforms the equivalent circuit Fig. 3.7, it will go into a
coaxial line with a shunt admittance on either end, which is similar to a symmetrical connec-
tion of two networks ‘CABLE 2,7(g) in cascade; from this fact one can be sure that he has not
attenuation poles. The network can have a greater wy by making k1 smaller, in contrast
with the networks TABLE 3.5(5) or TABLE 2.10(e); this feature may be convenient to obtain a

narrow band characteristic.
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3.7. High-pass networks (II)

The network Table 3.3 (1) will have an equivalent circuit Fig. 3.8(b), with
a general symmetry coefficient dlZ' This network has a significance of having series
capacitances. so that its characteristic is a high-pass one. The image parameters
will be obtained from the 2quivalent circuit as follows:

/ k) 2k?  [145%/0?

ll,/ le \ pZ/ © 12

8% _ /412 (1-k;) 1
tanh 3 = x >3
l1+p /ul

2
'
A= <ilz(l+kz)-2k1

Z =W
o

wy a'/2 kl
If dlz(l-kz)/ A'< 1 in the expression for tank (90/ 2), there will be attenuation poles.
This may be also understood from the fact that the equivalent network can be trane-

formed into a series derived-m type one as shown in Fig. 3.8(c).

If in particular, there is a relation

2
dlZ kz’ kl ’

the network will become a constant-k type one, which is equivalent to the network (b)

made of coupled 2-wire lines. Its image parameters are

e
ta.nh-«,gf-'-

—_—
[ 2.2
+p /e

2,
w “= (- Zkz)/Z k,

I

Fig. 3.10 shows some examples of its frequency characteristics.

3.8, 4-element networks

In the networks Table 3.1 and 3.2, Za is of one element, and Zb depends upon
the choice of Z. If one takes Wp or W/p as Z, then Zb can be of 3 element, and the

whele network will be a lattice network of 4 controlling slements, so that one may
obtain a filter of a band-stop type or a band-pass type.




PIBMRI-1048-62 26

One may choose Z in any way; those are desirable that give higher network
grades, whiie those are of no use that give degenerate networks. Those networks
in the following Tables are 4-element ones made with attention above.

3.9. Band-stop networks

The band-stop networks, Table 2.4, will be explained with an example deduct-
able from the network, Table 3.]1{L). If one takes a capacitance as Z in the network
Table 3.1(h), then Z, will be only a capacitsnce, and the whole network becomes an
all-pass. For this reason, an inductance Wp will be used as Z. The network will
then be a band-stop filter. Here, since

w - k%)
2W, —°0— 4p

w

(] 2
=2
W P

z‘g wl 1(1- kz) p' zb'

the image parameters are obtained as

Zo = /Z‘Zb

14 p? w/W (1 - )

c z
= /2 Wu(l - kz) “o (1-k")

1+p w/ w_
tanh (00/2) = / Za/ zb
2w, (-k,) 1+pZ W/ W_

W (1-k°)  14p° W/ W _(1-k%)

As one can see from the above expressions, it is Zb that plays a major role directly
in the characteristics. Cutoff frequencies w, and w, are given by the equations
4

ul = wolw. w,

and the attenuation poles are such that satisfy

zmwou.k"')/w

za = zb
or

2 n L2
2w p+wo‘1-k)/w

4 pz+WJW

Wi -klp =
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The poles of attenuation correspond to the state of the balance of a bridge network.
The networks from the top to the third in Table 3.4 are suitable for narrow bands but
the other two are not.

3.10. Band-pass filters22'%3

Band-pass networks will be examined, with the network Table 3.1(d) as an
example. Take Wp as Z, then Z‘ and Zp, becomes:

2 2
2W_ p +w°(1-k)/w

P pz+Wa/W

The only difference from the preceding paragraph is that Z‘ is here capacitive. Image

1
Z, =W l-k) o 2=

parameters are obtained, in like manners,

l-k
MZ”l 2 5
(l+kz) {1-X%k")
The width of the pass band is
Y 2 2_ 2
: W, ew, = W K/ W

and is dependent on the coupling coefficient k (= 2 kl/ {1+k,)), so that it may be
made easily small by making k1 small. Attenuation poles will be produced at such

frequencies
2 W (1 -k2 +k,) (1- K
pz _ 1-M i k) 1ok, =(l+k,) (1-x)
——— -
® M 1 w (1-kz).(l+kz)(l-kz)z




PIBMRI-1048-62 28

that satisfy tanh (90/2) = 1. That is, one has attenuation poles if M2<1 or if
M2 > 2 /e 2

2 1

Those 4-2lement networks from Table 3.1(a) and (b) have almost the same
properties. Their parameters are shown in Table 3.5.

Networks formed from Table 3.2(j), (k) and (1) are also band-pass filters,
suited for narrow bands. They are in an antimetric relation to those of Table 3.5,
as shown in Table 3. 6.

Networks to be formed from Table 3.2(m), (n), (o) and (p) are band-pass
ones but they are difficult to have narrow bands. One may adopt them: as wide band

ones. For example, the band width of the network from (m) is

W (1+4k)
uzz-ulzt-o——(l+k+2 1}»?—)
2W({-k) o

and cannot be made zero. On the contrary, let k=1, then the network tends to a

low-pass one. Table 3.7 shows their network parameters.

CHAPTER 4. Ladder-type networks

In previous chapters, properties of simple networks consisting mairly of
coupled two-wire lines or coupled three-wire lines have been treated on the basis of
their equivalent circuits. The properties of coupled line networks have thus been
revealed to some extent, and at the same time, there are included many networks
that will be of practical use in their original forms. Some of them are examined

in Chapter 10 in more detail, accompanied by experimental results.

One might consider about increasing the numbers of wires in coupled lines to
obtain networks of higher grades. But the structures of the lines will be complicated
rendering the manufacturing very difficult. Moreover, it is also a difficult problem to
investigate the relations betwecn the linz constants and the dimensions of line structures.
Narrow band networks, one of the advantageous types of coupled line networks, need
high Q elements, while it may be difficult to obtain high Q elements with lines of many
wires. From these reasons, lines of too many wires will not be used except for very
special aims. In this paper, therefore, lines of four or more wires will not be con-
sidered.

To have networks of higher degrees, combinations of networks from 2-wire
lines and 3-wire lines will be considered. The mannera of combination of networks
may be duplexing or cascading, just as in lumped network techniques. This chapter
and the following give design procedures to obtain coupled line networks, transformed
from networks designed in lumped parameters, through the use of equivalence
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relations desc:ibed in presious chapters.

Chrapters 6 ~ 9 describe netwo.k synthesis by the extraction of coupled
2-wirz lines, corresponding to the synthesis of coaxial networks by the extraction of
unut coaxials.

This chapter describes ladder networks, which are the most basic in the
lumped domain.

4.1. L-type networkszs

The basic network of a ladder structure is an L-type network. In the L-type
network, Fig. 4.1, the realization of the series element is of the severest problem.
One can use a double coaxial structure to realize a series element. Otherwise, one
can realize Z1 accompanied by ZZ’ If Zz is capacit've, the degree of Zl must be
smaller than or equal to that of ZZ’

In coaxial filters, endeavors 'ave been made in design procedures to avoid
the use of double coaxial structures. In coupled line filters, double coaxial lines
may be considered as a special case (k= lor k= dr of a coupled 2-wire line.
Table 4.1 shows examples of simple L-type network, in which the parts d=k are
double coaxial.

If one dislikes a double coaxial structure, as in the situation of coaxial filters,
one should consider ladder networks with T-type structure as a basis, as described

in the following‘ paragraphs.

4.2, Low-pass ladder networks

If one chooses Wc/p as Z in Table 2.19, then he will have a fundamental low-
pass network. Its equivalent network is T-type, with a low-pass characteristic. The
shunt arm at the middle is generally a resonant one, but it can also be made capacitive

by a proper choice of conditions; it is very flexible as a basic section.

';The specific feature of an L-type network is in Yu(p) = le(p) because Yu(p) = l/Zl.
Yzz(p) = (l/Zl) + (l/Zz). le(p) = l/Zl = Yn(p). The line constants of the line to be
extracted are d x k = Yu(l)/ Y, (1) = le(l)/ Y,,(l), according to Chapter 6. The

remaining network has

which again is an L-type network. But the relation, d = k, which comes from Yll =
le. leads to 6 ® oo, according to Eq.(1.21); this msans the coaxial structure. In
other words, an L-type network needs a double coax.al structure, which is made up

of a double coaxial combination of bar~type net ~ks of Y“ = 1/ Zl and Z,, = ZZ'
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First design a 1 eference lumped low-pass network (with notice on
p= j tan 2 vfl/c), and then divide it into ‘I -sections in an appropriate way, and
next transform each section into a couplec line network with the use of equivalence

given in Table 4.2.
[Example 1 ] LPF of Wagrer character, n - 6.

An LPF of Wagrer character, n= 6, is given in a ladder -tructure26 as shown
in Fig. 4.3(a). Divide it as in (b) and transform each section into a coupled line one,
then the whole network will be shown in (c). (Refer to Fig. 9.5, n= 6, Chapter 9).

[Exunple 2] LPF of non-polar Tchebycheff character, n= 5,

The riaximum loss in the pass band is specified to be 3 db. Then one has
e . 1 +—lz-+ %—cos (10 cos 'lu)
4 2
A=9,1749 p° +8.7649 p° +1
P 4 2

The input impedance, for 1 ohm termination. is

A _ 9.1749 p* + 8.7649 p% 41

Z = =
in = "C " 32 p% 4 42.306 p° + 11.486)
1
=
3.4878 p + 1 1
0.7607 p + .
4.4999p +

0. 7607 P ‘fniv—a——p——

and the network is expressed in a ladder structure as in the figure. It may be trans-
formed into a coupled line structure, as in the previous example. (As to the charac-

teristics, refer to Fig. 7.5).
[Example 3] A ladder network of Tchebycheff character with attenuation poles.

A network with attenuation poles will be obtained if one cascades two series
derived-m LPF, as shown in Fig. 4.5. (Reports are made on shunt derived-m
networks in reference (28) ). Design the image impedance of each section to match
each other, and let M of derivation be m, and m, respectively, then the equivalent

1
network will be a symmetrical lattice with z, and Zb given by:
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2
R (ml+mz)—P—-(—% +1) ]

W ul

1
Z
(1+mm,) f-z +1

2
R {(l + mlmz) -ET+ 1}
“1

Zb'

B
(m1 + mz) w, )

where w 1 is the cutoff frequency and R the nominal impedance.

Now, the effective attenuation a of a symmetrical network is

2
a=x= 10 loglo(l+E ) {1~ Zb zb (4.2)
( - )
R " Rp' )y
where R.r is the resistance of the generator and of the load. Using the values Eq.(4.1),

one will have

p 2 1 2 RT
(m1+mz)(l+mlmz) {LZ +-—-——}{.RZ+(1-_.Z_)}
w w 2 R™ (4.3)

1 1 1+m1m wl

Es=
2
R P 2
T 2 2 1 P 1

“1 l-m1 ul l-mz

Here a new frequency parameter P will be introduced:

(4. 4)

Poo—

P J 11—(- ut the upper limit of guaranteed pass band
“o Jk  at the lower limit of guaranteed pass band }

With this P, the expression of E becomes
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2 2
7 w ' fw 2 w,2 R
(ml + mz) 1+ mlmz) P{pz +_1._°.} { pZ +_lz_(1 - _";_)}

o' l+mlm2 w R )
5 2 2 2 2
R.r(ul) (l-mlz)(l-mz) : 2+ul /wo 2+ul /uo
R w (w z/u ZF P 1= P lem
o 1" 7o my 2
) (4.5)
P Pz + 822) (F’2 + 142)
= H
2 &, & Z
aa, (P +_z_)1 (is) +—lz)
a a
2 4
if one have the relations
2
ul RT ul 1
e/ =yt 3
o R o ./1<|>mlm2
{4.6)
d .2 1, 21 1
a w ' a w
2 o./l_mzz 4 ° 1_,,,12
(m +m,) (1 +mm,)
He= 1 2 172 (4.7)
RT (:I_)S
R w
A Tchebycheff characteristic will be obtained if a, and a, are given to be
a = ksn(%(—. kz). a4=knn(-5-5is-. kz) (4.8)
Solve Eq. (4.6), one will obtain
oo O 2&2-34(324-32) 2 w, 2
1 4 4 72 4 1. (—L
('—2') = ’ ml ( l4)
& 1-a,2 6 L4
(4.9)
R. 2 w, & w
(=) =1-(ay/ ;lo-) ym2a1. (-,% .,
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Actual numerical values will be computed. Let the guaranteed pass band
0~ 0.8207, then one has

k= 0.8207, w =1, a,>
) 2

= 0.2796, 342 = 0.625]
which yield

2
o 22 2%0.6251 x 0.6251" (0.2796 + 0.6251) 0.9624

1 1. 0.2796 x 0.6251°
mlZ = 1 0.6251 x ulz = 0. 3996
mzz= 1-0.2796 xulz= 0.7315%

2

R 1
(w—) = = 1. 4095
R 1- 0.1796/‘.,?

1= 0.9810, m, = 0.6321,
m, = 0.8552, R/RT = 1.187. The network will be like the figure, for the value
R.r = ]. The network, obtained by the transformation Table 4.2, is also shown

therein. Its attenuation characteristics is shown on the next page. (Fig. 4.7)

The final v. lues of the parameters are obtained to be w

4.3. High-pass lattice networks

The network Table 4.3 will be examined, as a high-pass basic network. Its
equivalent circuit will be given to be a T-type one, from equations obtained by putting
end conditions into Eq. (1.25). As in the low-pass network, the arm in the middle

is resonant, and can be an inductance according to conditions.

One should design a HPF in a ladder network, divide into appropriate T

sections to be cascaded, and transforrn each section into coupled line structure.
[Example 1] HPF of Wagner character, n= 6.

A frequency transformation p—ol/p. applied to the network Fiz. 4.3 (b), will
produce a HPF  Wagner character, n= 6, as shown in Fig. 4.8 (a). One have only

to transform each section into a coupled line structure.
[Example 2] HPF of Tchebycheff character without poles.

The LPF in Fig. 4.4 will be transformed into a HPF of Tchebycheff character
without poles, if a frequency transformation p-*1/p is applied. A: in the previous
examples, one have only to reform the network in coupled line structure, by the
use of the relations given in Table 4.3. One can also realize it into a combination
of two-wire lines without using a 3-wire line, if he makes use of the equivalence
relations in Table 4. 4.
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fEu.mple 3] HPF of Tchebycheff character with poles.

Apply a frequency transformation p+l/p to the network Fig. 4.6, and utilize
transformations Table 4.3, the network Fig. 4.10 will result.

4.4. Band-stop and band-pass filters.

Network parameters of BEF or BPF may be obtained by applying a frequency
transformation

p= AP

p tu,
A: bandwidth ( w, - ul)

w i center frequency (/w w,)

to those of LPF or HPF. The structures of line elernents wiil be changed as shown
in Table 4.5. For instance, one will obtain a configuration Fig. 4.11, if he looks

for a BEF with an application of the frequency transformation to the LPF in Fig. 4.4.
Obtain a BPF from the HPF in Fig. 4.9, a configuration Fig. 4.12 will come out.

The relations, among the elements of LPF or HPF before transformation and
those of BEF or BPF after traniformation, are complicated, and omitted here.

CHAPTER 5. Narrow band filters.

In the preceding chapter, there is described how to realize primitive and
basic ladder networks in the form of coupled line type ones. The method adopts
T~-networks as basic, rather than L~networks, and enables one to avoid the use of

double coaxial structures.

One may come to a difficulty that the values of the elements may not happen
to lead to easy construction in an actual network design. It is very probable to come
to the necessity of line elements with extremely large or small values, if the designer
assumes an extremely high or low cutoff frequencies, or extremely narrow pass band;
such elements will bring him to distress how to make. One can make shielded line
elements with characteristic impedances only from 10 to 200 ohms, so that he has
much more restrictions than in the design of lumped networks. Even in lumped
networks special design techniques are used in narrow band filters. Similarly, in
distributed networks one should have special design techniques in narrow band filters.
In lumped networks, there is a technique of coupled resonant circuits, which suggests
the use of coupled resonant lines of quarter or half wavelengths.
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In this chapter, the theory starts from ladder networks and comes to a
result with coupled resonant lines. From the coupling point of view, one will notice
that the atructure of a coupled line network is very flexible. This is an advantage of
couple ] line networks.

5.1. An example of a narrow band filter.

Here will be explained a BPF of Wagner character, n= 3, as an example of
a narrow band filter. Fig. 5.1 shows its lumped representation; as one takes the
bandwidth A= wy-w, extremely small, the value of the series element will become
very large while that of the shunt element very small. One must have a different
procedure in mind, because the values of the line elements will be of extreme ones
if the network is designed in the way described in the preceding chapter. One can
obtain realizable values as described below.

First insert ideal transformers so that the factors Ain the series and the shunt
element wiii diszppear. The insertion of such ideal transformers should not affect
the transmission characteristics of the network. The network goes into that shown
in Fig. 5.2, where Ais related only to the transformation ratios of the ideal trans-

formers.

One has to make up this network ir: a coupled line type; but since an ideal
transformer can only be realized if it is accompanied by some elements on both sides,
one may connect lines in cascade without changing the amplitude characteristic of
the network. The amount of the phase shift of the network increases inevitably by
the amount contributed by the coaxial elements added. The network is shown in Fig.
5.3.

Divide the network by the broken lines into five portions; each portion may be
transformed into coupled line type ones through the equivalence relations given in 5
App. 2.3 and 2.2, and the whole network will take the form Fig. 5.4. This may also
take the form Fig. 5.5 or 5.6 if one applies the equivalence relations of 5 App. 3.1 or
3.2. It will be noted that the center frequency w is taken 1 in the networks Fig. 5.4
and 5. 6.

The above procedure may be summarized as follows:

{1} Add 1 ohm coaxial lines to the input and output terminals.

(2) Insert ideal transformers, so that Ais related only to the ratios of
transformation.

(3) Transform each portion into coupled line type.
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5.2. Narrow band filters with coaxial lines added.

Examples will be given on BPF, of Wagner characteristics, with coaxial
lines added to the input and output terminals, in the same manner as described in

the preceding paragraph.
[Cale L= l]

A network of Wagner characteristic, n= 1, of a series resonant type, shown
in Fig. 5.7a, may be transformed into one shown in Fig. 5.7e, if one adds 1 ohm
coaxial lines to both ends (b), insert ideal transformers (c), and apply transformations
5 App. 2.3 and 5 App. 1. It may also be transformed into one in Fig. 5.7f (30) or
5.7g, by the use of the relations given in 5 App. 2.1 or 2.5.

In the network Fig. 5.7b, one may invert the phase at the output terminal
without changing its amplitude characteristics (Fig. 5.8a). Represent it in a lattice
network (b), and one may also have the network(zz) Fig. 5.8¢c, with a coupled 3-wire
line, by the use of the relations given in 5 App. 3.3.

One may also start from a parallel resonant circuit Fig. 5.9a, instead of a
series resonant one, Fig. 5.7a. First, add 1 ohm coaxial lines (b), insert ideal
transformers (c), transform by the relations 5 App. 2.4 (d), retransform (e), and
finally one will obtain the network (f) or (g)(23). by the relations in 5 App. 3.1 or
3. 2.

[Cale ns= Z]

BPF of Wagner character, n= 2, has the form Fig. 5.10a. With this as a
basic network, one will obtain the network (d) or (e) in the figure.

[Case n= 3]

If one starts from the network, n= 3, in Fig. 5.1, he will get to the networks
Fig. 5.4, 5.6, as described previously. Start from the network Fig. 5.1la, then
the networks (c) and (d) in the figure will be obtained.

As an alternative method, one may also have the netwark Fig. 5.12(f), if he

moves the coaxial lines.
[Cue ns 4]

One may obtain various network, depending on the manner of transformations.

Some are shown in Fig. 5.13.

One can have networks in almost the same manner for greater values of n.
For a value of n, there may be a variety of networks, from which one may choose trose

with fittest structures. No further comment will be made on this point.
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[Examination of the expressions of the characteristics]

The change of the expressions, of the characteristics, will be examined, that
will be brought about by adding coaxial lines. The square amplitude function (yz) of

the basic network, that contains no superfluous coaxial lines, is given

= Ise P=4[1+ 8% {om)}?]

where 9 (p) is the original function, S (p} the inverse transmission function, and §
the constant of deviation. Also the input and output resistances are taken to be both

1 ohm, and the minimum attenuation to be 2. To increase the number of circuit elements

without changing yz. one should multiply t".e numerator and the denominator, of the
characteristic function {cp (p)}z. by the same factor. Multiply them with (pz -l)z.
then

2

yz=4[1+az{o(p)}z —‘22—29;] (5.2)
(p”~ -1)

and the inverse transmission coefficient S' (p) becomes

(p+1)°
' (p)=S (p) -22—1— (5.3)
p -

T“is function has a degree 2 higher than that of the original inverse transmission func-
tion S (p), corresponding to 2 more circuit elements; yz itself is not changed, of
course.

The calculation will be shown on an example of Wagner characteristic, n= 3,

mentioned above. In Wagner case,

2,, 2
{w(p)}z.{_(zh_:_l-) }n (5.4)

and one has, taking 6= 1,

2 2 +1 2) n 2 1 2
s = {
y = 4 1+ \ (EK—P—) ‘—p%.—l-) \50 5)
where A gives the bandwidth:
Anm Wy =W, W, ®w 1 (5. 6)
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The center frequency v, is here taken to be 1. The inverse transmission function
is, for Wagner character - = 3,

S(p)-z{(LzAi)snt-Z;*—‘;zu( TP (5.7)
P P P ’

and the inverse transmission function S' (p), specified by Eq. (5.3), is obtained, from
Eq. {5.7),

2 3 2 2 2 2 2
s' (p)= 2 {(LA%L) v2(Bgtly s2 (L +1} (P”’ (5.8)

-1)

The function @ (p) is:

2+l 3
@ ()= 2 (E=—) (5.9)

Separate S'(p) and @ (p) into odd and even parts:
S' (p)m H +pH, (5.10)

o (p)s GI+PGZ (5.11)
where Hl and Gl are even parts, and p Hz and sz are odd parts. Network parameters
A, B, C, D can be obtained:

A=D= _12 H,

2, 2 2 2,, 2
{z (Brtl) +106% 41+ PAQ{(PA‘;I) +z} 2p
z

= {5.12a)
l1-p
B=§- (H,1G,)
2., 2 } 2., 3 %
+1 +1 +1 ,2

l1-p
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{.’.(1’-;11-)z +1}zp+zpz(PiAtl_)3 +2 éi-(pz'l-l)
or = P zP P (5.12¢)
l1-»

c=4 (H,+ G,) (5.124)

These expressions will give the network Fig. 5.3 or Fig. 5. 11b.
The same applies to other values of n.
5.3. Networks obtainable as cascade of lattice sections.

In preceding sections, examples were shown to make realization easier by
adding coaxial lines to both terminals. Other manners may also be taken into consid-
eration, in adding surplus elements. For instance, ald surplus L and C to a network
Fig. 5.14a of Wagner character n= |, one will have a network (b)a”. Notify the
elements as shown in the figure, then the network parameters are obtained:

it 2

. !
2 2
L p‘C,L, +1 p"C, L +1
1 272 171
B= = T + o (5.13b)
1 pPL, P
piC,L, +1
C= —I‘—— (5013C)
P2
2 ~
p° L, (C, +C,)+1
D= ) (5.134d)
P CGL,

This network cannot be symmetrical. Aessume it is antimetrical; then, since B = C,

it is necessary that

Ll + Lz = Cl' I..1Cl = Lz Cz (5.14)
Aleso the square amplitude function yz becomes

yi=14 [1+%(A—D)Z]

L, L, C, C, p* -1 €
=4(14
z } (5.15)
2 CILZ P

2 2 2
(L,C,p -1)(L,C,p +1)
_4[”{ 1%1 1“1 }]

pJ
ZClep
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If one assumes the condition

L,C=L,C,=1 (-1/»02) (5.16)
then he has 2
2 2
Y= [1+{ e D +1) }] (5.17)
ZCIsz

Let the {requencies, at which the effective attenuation becomes 3 db, be “ and w5 e
These are the frequencies where the magnitude of the characteristic function becomes

unity. Thus, putting w 1 and w, into the above expression, one has

914- 1 024 -l
—— =l = =-1 (5.18)
2CL,v, 2C,L,u,
which yields
1 2 1
2CLy=—y o w0, -
W W
1 2
cw el (w—w,) (W, +w,) (5.19a)
2 ¥ 27wy Wty 0
u13 uzz =1(m 004) (5.19b)

Denote w, - wll A, w, +01l K. then

2 2 2
2 +1) (- 1)} ]
=|1+ 5.20
y [ {JP—A—I, -Pjg—p ( )
This is evidently different from the Wagner character already described, and
also different from those of 3-element networks described later.

Next, one may determine the values of the network elements of Fig. 5.14 (.),
so that the characteristic follows Eq.(5.20), by the use of conditions, Eqs.(5.14),
(5.16) and (5.19). They are:
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1

L, 2 e—— 5.21
L T+ AK/2 ‘ &
L,=_0K2 _ (5. 21b)

2 Y1+ AK/2
c =v1+AK/2 (5. 21c)

_Y1+AK/2
2 Ax/2

as shown in Fig. 5.15 (a)s This network will, by transformations, go through (b) to

C (5.21d)

(c). which is a cascade of a symmetrical lattice network of L only and another

symmetrical lattice network of C only. This is the specific feature of this network,

and it can be easily realized into a coupled line network by means of the transformations <
5 App. 2.1 or 2.2. The result is shown in (d).

The above discussion started from a Wagner network of n = 1; the reasoning
will apply if one starts from that of n= 2. Add two L's to a Wagner network Fig. 5.16{(a)
transforn. the resulting network (b) by appropriate transformations, and finally a
network (d) will be obtained which is a cascade connection of symmetrical lattice
networks. The same will happen, if one adds C's insteads of L's, and the result
will be such that the lattice of L in (d) should be replaced by that of C, and the lattice
of C in that of L. One has no change in the procedure starting from Wagner networks

of greater n, and the destiny is always a cascade of symmetrical lattice networks.

The characteristic functions of this kind of networks can be made to have the

forms:
2 2 2
casen=1 {(PE:,I) (Bk-pl)} {5.22a)
2 2 ; 2 2
case n= 2 -{ (p_+ 1?! (J’k" 1)} (5.22b)
(Ap) P
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2 ) 2 2
case n= 3 {S& +1) [\ '1)}

( Ap)3 kp (5.22c)

n-l 2+l n 2 1
case n=n (-1) {(H;—) LY-P_F (5.224d)

One can ootain network parameters from these characteristic functions; here
one has to factorize algebraic expressions of higher degrees. Instead, one can better
determine clement valv-s, by choosing conditions that the amplitude characteristics
may be rep-esented by the equations (5.22), because the network configurations are
already known.

[Add elements to a network n = 2]

If one starts from a network of Wagner characteristic n = 2, the network
Fig. 5.17 will come out. Its elements can be chosen as shown in the figure, because
it must be a symmetrical network. The network parameters are:

2 2 2
o (L, + L) (C, + cz)[ 4/p ol 4LL, +4 L,L,C,C,p
2 2
(L, - L) (C, - C,)(C, + C,) (L, + L,) (L, + Ly)° (L + L,) (C; + C))
(5.24a)
2 2 3
(L, + L.)°(C, +C,) 24 4LL,p 8(L.L,)*CC,p
B=._2 12 1 z[ P 172 z1z (5. 24b)
(L, - L)7(C, - C,)| G, +C, L +L, (L +L,)° (C, +C,)
(L, +L)%(C, +C;) 8/p> 4/p 2¢,c,
C= 3 5 + - + (5.24c)
(L, - L,)7(C, -C,) | (L + L,)°(C, +C,) 1 +L, C+C,
D= A (5.24¢)

Since A - D= , the square amplitude function is related to (B - C),

y=a[1-+ B-cP] (5.25)
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Obtain B - C:

2 3 1
8J(L,L,)" CC -
Ly + 1y (6,4 Cy) {( el Ay }

B-C=

~Z
(L, - L)° (€, - C,) (L, + L,)* (C, +C,)
4(pLL,-1) 2(1—-pC1Cz)
I P (5.26)
L +L, G +C,
The relatior.
L, L,=C Cy=1 (5.27)

is necessary, in order that B - C has a factor p2 =~ 1. Put this relation into (5.26),
then

2 4, 2
ety (c1+cz){ 8 (p" +p° +1)

(L, - L)ic, - ¢,) L p® (L, + L)%(c, + C,)

"1__44{15 ) Clzx/gz } ®" -

1 2
(5.28)
2
8 (p -1) 4 (l..1 +L,) (C1 +G,)
= ) ;) p +4{1l+
(Lz - Ll) (C1 - CZ) P 2

2
(L) + L) } 2 ]
- P +1

and one has the factor (pz = 1) as he should. Moreover orie must have the factor
(pz + l)z in order that B - C would have the form Eg. (5.22); that is, the expression,
inside the brackets on the right hand side of Eq. (5.28), must be equal to (p2 + l)z.

Thus, it is necessary that

2
(L + L) (G +Cp) (L +Ly)

) ) a2 (5.29)

1+

Further, the coefficient of the right hand side of Eq.(5.28) muyst satisfy, comparing
with Eq- (5- 22)0

2
2(L,- L) (C,-C;) ,
3 = A" K (5. 30)
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If these are the case, yz takes the form of Eq. (5.22);

2..2 .2 2
x4 [ 1-{‘:P——TA *)” 'E'F—( 'p”} ]
P

From the conditions (5.27), (5.29) and (5.30), the network elements are obtained:

o’ - v’ 2k, C,= — (

= ok, c,= 5.31 a, b)
— 2= &
L=c+cl-1, L=t (5. 31c. d}

T give the network in a coupled line type, one can apply transformations
5 App. 2.2, and the network Fig. 5.18 will be obtained.

The same may be done with adding C's to a Wagner natwork n= 2. Here one
havo to replace pL by I/pC' by pL', and he has

' 2 ' 6 2
B c '(Cx +C, "L + L") [s (1-p7C,'2C,'" L' L,")
€' -, -1 Lpic vc, P (L +L,")

sa-pc'c,) 2p%L'L, - 1)

+ LE + T L
FIC, %G, P+ L7 (5. 32a)
Under the condition L,' L,' = Cl' C,' = 1, it goes down to
2 (C'+C, (L' +L,")
BG = 8 (1- p) [p4+pz{“_ A Rier
] ] 1] ]
(C,' +C," ) (L, - L") 2
(c,' +c,")? (5. 32b)
1 2 }+1
Sl

To have the form Eq. (5.22), it is necessary that
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(€ +GN Iy +1,) (G +G,"%

1+ ~ T =2  (5.33)

2
(C L. C l) (L L. |)
12 I 2 ~h) | Atk (5. 33b)

From these relations, the elements are determined:

(L, - y? 2 1
——Ty—— = A" K, Ll' = —r—r (5. 34 a, b)
2 2
' - ' / 12 ' 1
Cz = Lz i Lz -4 Cl = t;-'- (50 34 ¢, d)
These values have, in comparison with those in Eq. (5. 31), the same forms with the

correspondences L, 'e Cl' Ll'-o Cz, Cz ‘e L., Cl'- LZ' Numerical values of Eq. (5. 34)
may be obtained from Fig. 5.19 with the respective correcpondence. In the coupled

line type network, one has to make correspondences WL'-.WC, Wc'-.WL. kc'—.kL.

[Add elements to a network n = 3]

Add excess L's to a Wagner network n = 3, a network Fig. 5.21 will be obtained
v’hose network parameters are:

\

Ao L LG ¢ C,ML," + Ly ")C," +Cp") [{1 K p? L L,CC, }{1+4p7'1,1 'Lz'cl'cz'}
(L, - L.l)(c1 - Cz)(Lz' - Ll')(cl' - Cz') (L1+Lz)(Cl+Cz) (L1'+Lz')(cl' +Cz'

L c'c,'
+4{ p ,,P‘lz}{ % S 2}]
t ] ] [
CI+CZ L1+Lz Ll +I..z C1 +Cz

Br=e

t t t t z t t
£L3+L1)(Cl+cz)(l..z +L, ')C, '+C,") [z {1+ 4 p“L|L,C,C, " { Vp pL'L, }

(Lz- Ll)(C}:CZ)(LZ"Ll' )(C1 '-Cz ") (L1+LZ)(CI+CZ (Cl'~|>(.'.z ! Ll' +L, '

Vp pLL 2
+z{ L2 }{n - '4/9' ' }]
CHC, Li+L, J U (L '+L,")C,"+C,")
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1 | ] 1 ] z L ] ]
c_“‘z“‘l’(cl“;zm‘z L, ' )G, '+C, ") 2 { 1/p JPCGC2 (40 L'L,'C'C,
(Lp=L NC,-C,NL, '~L ")C, '-C, ") [ L#+L, C,+ Cz} { (Ll'+Lz')(C1'+Cz')}

.2 {1+ 4/p2 }{ l/p . pCl' Czn }]
(L‘ + Lz)(Cl+ C,) Ll' + Lz' cl' + Cz'

b o Eath)(C) #G,i(L, "4y )G, 4G, 1) [4( Vp *pclcz}{ W .p L,'Lz'}
Cc

(LZ-LI)(CI-CZ)(LZ'-Ll')(cl' -Cz') LI*LZ C1+CZ 1'+Cz' Ll'+Lz'
\ 2 . .
+ {1 + 4p } Sz 4/p
(LFL,NC#C,) L (L +L,')(G, ' +C,") (5.35)

If B= C, as an antimetric one, the 4 conditions,
t ' ’
Lle = CL’CZ ' I..1 Lz = clcz (5.36 a, b)
oL t ' '
Ll«l-L‘.,‘-l‘Jl +C,', Ll +L, =Cl+C2 (5.36 ¢, d)
are necessary. Rewrite A and D under these conditions,
(L,+L.)(C,+C, NL, "+L. ' }(C, '+C, ') 4p’L L. *C, 12 v LL,
e My Uaed Wt S Bhies Uhdaet B [{przxz}H p‘,_pll}]
] ] ] '
(LZ'LI)(CI'CZ)(LZ -Ll )(C1 -Cz ) (L1+Lz)(Cl+Cz) Cl +C, Ll + LZ J

A

2 2 2 21
L,+L)(Cc +C 4 / C, C
pa 2t ) 164G [{u /e }+4{ A b ]
(L,~L;HC;~C, NL, ' =L, ' }C, '-C, ') (L#L,)(C +C,) (L#L, C +C,
(5.37 a, b)

Add one mors condition

Lle = CICZ =] (5. 38)
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then A - D will have a factor (pz - 1) as follows:

16 6% - 1) (p% + 1) .
A-D= [p
(Lz' Ll)(cl’cz)(Lz "'Ll' )(cl"cz' )

(5.39)
(C,+C,)(L,+L,)
o tC e, 24+(C4C,0% - (L4l tpl 41
4 172 172
In order that the expression inside the brackets is identical to (p2 + l)z. it is
necessary that
(C+C, HL,+L,)
V272 2 2
y {z+(cl+c,_) - (L + L,) }-z (. 40)
Moreover, if th: coefficient has the relation
(L,-L,){C,-C,)(L, " '-L,')(C,'-C,")
2 1'Y71 T2VT2 T 1 ~2 =A3K (5.41)

8

then the characteristic function will take the form Eq. (5.22). From the 6 conditions

in Eqe. (5.38), (5.40), (5.41) and (5.36), the values of the elements are determined
by solving the relations:

' =1 ! = ' 1
Cl"= Lz ) Cz- Ll ) Ll- C2 ’ L2= Cl (5.42 a,b,c,d)

8 a3 K+ 4{(L+L,)? - 4

\e
(Ll+ LZ) -4

(C+C,) (L #L,) + (C, + G )L, + L) {2- (L1+Lz)z} -8=0 (5. 421)

Fig. 5.22 showe the relations between Aand A & K, between Aand values of the elements.
The same procedure applies to greater values of n.

[Note] The attenuation character of this network differs from those of Wagner
networks in the point that the former has the factor (pz - 1)/K p in surplus. A new
frequency variable may be defined
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P> +1

' =

o p

The usual frequency transformation. Then the surplus factor is transformed into
2 2

p .91, p +p1-z —ﬁ—*{p'- zp }_ﬁ_
p= %-{Ap'i \/(Ap')z-4}

Ais very small, if one is concerned with a narrow band. So long as Ap' << 2, one has

p‘-.'c jl. K=u1+(ﬂ2énzwo=2

2
~ l i. -l
Kp J
Therefore the characteristic function approximates{- (p')z} R, and coincides with

that of a Wagner network. That is, the attenuation character in the neighborhood of

the center frequency is like a Wagner one, if Ais small.

For an exact computation, one has

2w f 2x f
pljtan(zzf-f).NIBtan( ll),uz-tan( Zl)
with which one obtains
2nf
2, fan?ii,y sin (—L-1)
= uj
Kp LY 4l 2% f 2% §
{tan 2 1 « tan = l)_]tan-—c-—l sin ( < 1)
and consequently the characteristic function becomes
( wal Zvrfl 12
tan ( = 1) sin ( < 1)
tan(z: H l)sin(T: fl)

Then one has only to assume fl to make computations.
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5.4. 3-element band-pass filters

The basic circuits of band-pass filters, called 3-element type ones, are shown

in Fig. 5.23; they are capacitance-coupled or inductance-coupled, and are widely used

in intermediate frequency amplifiers and the like, as lumped networks. Design methods

are given in references (32) and (33) with the use of approximate romulas near the
center frequency. Some techniques are also reported in reference (20) to have coupled
line filters. Here will be presented those derived by the procedures described in
preceding paragraphs.

Filters of this type have unsymmetrical attenuatiun characteristic with respect
to the center frequency; networks (a) and (b) have greater attenuation in the upper
frequency side, while networks (c) and (d) have greater attenuation in the lower
frequency side. As to the values of elements, those of series arms in networks (a)
and (c) are inversely proportional to the bandwidth A, and will be very large ifA is
small; on the other hand, elements of the shunt arms in networks {t) and (d) are
in the opposite relation, being small with small A Other elements 2re directly or
inversely proportional to K= wy + w5 and do not change much with the variation of
bandwidths. To have a narrow band, one can insert transformers whose ratios are
related to A so that he has elements related only to K. Thus one need not add any
new elements, to the contrary to those networks described in the previous paragraph.

In Fig. 5.24 are shown coupled line networks derived from 6 such sections in
cascade. As to the element values, one can refer to the literature. Here are shown
only the derivation of ccupled line networks and their configurations.

5. App. 1. Kuroda's Theorem 1

The equivalence of the two networks below is given by Kuroda, under the

conditions
2

cd c

ATTFT * PToET

c=za+b 5 dz_a%_i_b.)_

5. App. 2. Equivalent circuits of networks with 2-wire lines
[App- 2.1] From Table 2.18 (e),

2 2
+e b 2 en n
WeanS2 52, dug +mi= , k=m=
n cn te cn te

R
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2 2
;.‘l;&.-w, b-S_Sz’_'_.w(d-kz),m- en = k
n cn +e cn te
ab K2 2 am®+b_ d
c.—z—-—'W(l--T). e=am +b= Wd, n.-——i—a—'
am +b
In case of symmetry:
%(l— L)'k'm_cx'cz vd=1
4 172
fapp. 2.2] From TABLE 2.19
- 2 2
w:;:.ﬂzte._,d=:— +mZ=—e-g_—-,k= m= G
n cn +e cn +e
cnz+e Z
a= W= —z— b—W(d-k)‘—r,m=k=_%L_
cn +te cn te
2
k ab 2 d am +b
c= W (1= ) = se= Wd=am +b, n= =
o amz“, Kk T Tam
In case of symmetry
L,-L
. W=—11!_ 2

(L, +L,), k= d=1
2 7

[App. 2.3] From TABLE 2.17 (c):

enz+ b 2 cnz
W=a= Tc .d=a+m= s k=m= —z-—
n en +cC en +c
nz c
a:.%—=w,b=c—er_—,m=k=_nz__
n en +c en +c
2
c= amz+b. e=x ab ns=s ar:m+b
am +b
[App. 2.4 ] From TABLE 2.17(d):
W e am2+b _ bmz _ c‘l-en2 Kk = bm -
—7 Teds—g— =—F— k= —y— =n
m am +b am +b
2 d c+enz
a"W(l-—a—)— s b= Wd=c+en, m= k_=_!;_
c+en
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2 2
¢ = W(d-k%) = abm ,ezw:ﬂzﬂ,n:: :3‘.".‘2__
am +h m am +b

[App- 2.5] From TABLE 2.17%(c):

W=a+cnz.d=—s——z—, kzﬂz_

a+t+cn atcn

2

W = b, a=W(l--§-—),b:W

(o (o

c= Wd, n= —13—

5 App- 3. Equivalence Relations between networks of coupled 3-wire lines.

ee. 3.1] wl(d-k%) - ww' Waw'
Wips 3 » Waz2 = Wy = ~worwr
W dw. . Wawa+w?@ -l
33 = d3Wy = WIFW'

_ WKW! WKWW'k
Wik = warwr— Yuks T waywer——

Wk = wdw'd'
1723 TWHHW?

[App- 3. 2] The two networks (a) and (b) are assumed to be symmetrical.

Wn=Wn' 3=y

.

2
dz I N VI
Wy W, u?
1‘122 kg2 { W' 43"y + Wy,a')
T2 W.'2k 2+ w,.'d. a
3 2Ky, 1 %2
- oy 14y -2y
12 W,k 2 W, (1+k,,)
k2 RTLT S ki
.o = WaIwd 1 3
2 3ty 9, d, (14k;;) =2k},
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L}
Yy oW {w L Tl }
d,T W.+W. d 1 Z ;
2 3" "um2 dz(l +k13) -Zk.z 3
’LApp. 3. 3] The network (a) is assumed to be symmetrical.
21 - b=-a
Wp=z— @b, gy = —og—
2
o R Ws _ e atb
32 {a+bXo+c) ’ N -2 TbBF¥c

a= W, (L-Kk3) b= W ll+kg,)

d, (1+k.)
c =W, (+k)) {—‘12—-25-3— -1}
2 y

2 1
d= W, (14k.)
nd+k;, —2—2"12
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CHAPTER 6. Ext+action of a two-wire line (34)

Extension of Richards' key theorem to 4-termiinal networks

In Chapters 4 and 5 are described ladder network building procedures, con-
necting sections of simpler structures, in a manner developed by Zobel. This is
because it needs complicated line constructions if one tries to obtain networks of
higher degrees by meane of using coupled lines of increased number of wires. This
will meet most requirements in practice. Synthesis of networks is not necessarily
unique, and some other procedures may also come into consideration. Even in lumped

networks, one may consider Cauer' s lattice networks along with Zobel' s ladder net-

works.

In coaxial filters, it is usual to use combinations of shunt elements and cascade
elements (unit coaxials). The same is applicable to coupled lire networks. This
chapter and the following chapters describe synthesis of networks by combinations of
shunt and cascade elements of coupled 2-wire lines. Shunt elements have no problems.
The treatment of cascade elements is more or less complicated and needs a detailed
examination. This chapter describes the extraction process of cascade lines, and

proves that Richards’' key theorem can be extended to multiterminal networks.
6.1 Equations of transmission in a coupled 2-wire line

Equations of transmission will be again cited. Among voltages and currents
of a parallel 2-wire line, set up arbitrarily over the ground, hold the following rela-

tions. Here it is assumed that the line is losslese.

V1 = VlO cosPl + Wo (I10 + kIZO) j sinpt 1
V2 = VZO cosPpl + Wo (kIlO+ dIZO)j sinpt e
1 "
Il = 110 cosﬁl.——-——z- (dVlo - kVZO) j sinpt "
Wo(d-k )
- 1 - ..
12 = 120 cospl +w——-——-z—(-kv/10 + VZO) j sinpt J
o(d'k )

where £ is the length of the line, B(=2n¢ / c) the phase constant of the line,

Wo the self characteristic impedance of the first line, d the symmetry coefficient of
the second wire to the first, k the coupling coefficent between two wires. These para-
meters are determined by the cross-sectional structure of the line, andd = lina

symmetrical line.
6.2 Cascade adding of a coupled 2-wire line

The network parameters (Yn. Y, le) will be obtained, of the network Fig.
6.2, which is made up of any four-terminal network (whose admittance parameters
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are Yn' . YZZ' o le' ) in cascade with a coupled two-wire line (with line constants

Wo d, k) in frort.

Set the voltages and the directions of currents as shown in the figure, one has
the relations, from Eq. (1.18),

{V] = [Vo] cosfl + [W ] 1[ Io] ; sinpt }
[.I ] = [Io] cospl + [W] - [Vo] j sinpt
'[Vo] and [Io] are related by

{e)=r] [v.] - [v]- [i:; e 1 (61)

[ ]
Y22

(1-18)

Put this into Eq. (1.18), then one has

[1 = [ovoe Wl eraa]+[w][y]er2[v] (6.2)

Represent this relation by

[1]= [v][V] (6. 3)

Then [y] will be represent::

v} = [-iu ':12]

=[y] + bl o) [0 + W] Ts] 2)” (64

This ia the admittance parameter of the new network thus made up. In 4-terminals

networks, the entries of [y] are as follows:
1

1 d :
Yy (P = —;—.[{Yu +-—P—-z—}{l+wop(d Y,, -leZ')}

Wo(d-k )

s .
k ]
- JLYR' +-—P—z—} (dY,' -kYy') Wop:l:

W_(d-k%)

! Y [~
Yo' 4 P {1+Wp(Y’-kY ')}
[{ 2e Wo(d-kz) } of I 12

- {le' t '—k'LZ"'} (¥y2' - kYzz'))wo"J

Wo(d-k )

Yzz(P) =

- 1 kp - i/
Yol = ‘5'—[ "{Yn' *m}{“ Wop (Yy' -k Yy, )/}
~ o
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¢ "
-k ' !
{ “E‘—Z“w @D (Y),' - kY, ) Wop]

-~
!

¥ e ({1 +Wp (Y -kY, )} {~1 W p Y, -k, w

2.2
-W SRS UYL - kY, ) (Y, -k Yy ) (6. 5)

Here it will be noticed that upon putting p = 1into Eq. (6. 4), it will yield
frol= [0 o)+ W Ww+ o] -m (6. 6a)

and a relation

-

M =Y, O d-k]
il =1 T 12 ]= 1 ] (6. 6b)
1"”1’ :[- Y0 Yy, m k1

which is independent on '[y']

6.3 Extraction of a coupled 2-wire line

Now, in contrary to the previous paragraph, an extraction of a coupled 2-wire
line will be considered from a given four-terminal network (Yn. Y 22’ le)

It has been shown that, in the :.:.twork|y (p)licomposed of an artitrary network
l[y (p‘]] and a coupled 2-wire line of characteristic impedance - W] in cascade, the
relation Eq. (6.6) holds which is independent on '[y (p)] Therefore, if [y (p)l} is
given, one can obtain [W] of the coupled 2-wire line, putting p= 1.

Y0 )
W™ v =2,
Y () Yapoll) - Yo (l)
Y, (1) Z..0)
4= fn _ 222 6.7
Y,,0) Z,,(1)
pPPAL Z, A

The remaining network[y' (p)]f after extraction of the coupled 2-wire line may be ob-

o) = (1] = [vo) w)e]™ [ - {w] o] (6. 8)

by solving (6.4). Entries of this expression can be written in precise as follows:

tained
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Yy' @ = = {1 Wop vy -k v} {Yn‘ '_dP'_7}
A W (d-x)

+W_p (kY), -»lez)-{

W (d-k
o K
zz' (p) = —-—-{l -W p(d Y - kY } { — P \',.
Vs K WoldkIh [ ) 69)
' /
+%W p(kkY,, ~Y,.) ‘
oP (k Ypp - ¥pp ‘w—t_—k'z)— } ;

\

Y '(p)=V{l-w p(Y, -kY E’{Y
12 oP U 12 (dk)

, k
tWp kY, -dY,,) {Yzz‘ “_LZ"}

W (d-k) ‘

L

Rewrite the given network [y(p)]! and the remaining network [y' (p)] as

(y], = Yy Yol , [yt] = ,‘Yu" YIZ"] (6.10)
Lle zzJ : Yo' Y,

then Eq. (6. 8) will go into

'] =[01]- {x@] [xm] ~p) M ¥w]- EY(X)]p ] (6.11)

Look back the procedure; Y(p) is given, and one extracts a coupled 2-wire line,
with line constants W given by Eq. (6. 7), from the given network, then the natwork

paramecters [y' (p)] of the remaining network will be given by Eq. (6. 11).

This is nothing but an extension of the Richards' technique, intc coupled 2-wire
lines, which originally enables the extraction of unit coaxials from given 2-terminal

admittances.
6. 4 Positive realness of [Y' P ]

Here the problem is whether the remaining parameters EYﬂ would have the
property of those of networks or not. That is, it is the significant point whether
@Y'J is a positive real matrix or not. If this is not confirmed, one can not be sure

if he can proceed with the synthesis of the network.

In order to keep generality, the following term will first be proved.
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Theorem: If [Y(p)] is a positive real matrix, and p, 18 any positive nuinber, then

frw) = e - vl veple | (G o - Creg) ) (6.12)

is also a positive real matrix.

This is the general form of Richards' key theorem extended into multiterminal
networks. But the proof will be carried out for a4 -terminal network, as an example.
Write the entries of Eq. (6.12) in precise,

0 Z,,p
T = [Yn IR S - {Pl p‘"511"'11""522’[22"2lele)}
v Z1Zpp-22 ©
2
- Zypp(YYor - Yy )];
e Z P ]
Y,,' = 2y [Yzzl pl-p) - — {Pl TP A2 Y 2ppY50%225Y),) }
v L Z%22%122 (6.13)
- 2, pplY Y, -Y,,%)
nPiPt i nt22"%)2
Z.,p
1 2 2. %y
Y, = — - — -
25 Y2 (pp-p) ¢ 7 7 o2 PrrPEnYnt ZpY¥p, +22)Y),)
1422212

2
Y Zpp (Y)Y, - Yy )]

where Z's are the elements of [Y(pl)] =0

5.4.2 Segregation of [Z]

Segregate[Z], in the manner that Richards took to proving his theorem on
twa-terminal networks by the use of positive realness of functions. The only difference

18 that here matrices are under consideration, rather than functions themselves.
Let any entry of the matrix [IZ]be represented as:

z= z@ 4 2®

Z(a) . P)PZ'PIZ) ' Z(b) Pl(Pz - Plz) e

= z ‘ .14
P P P -p ) S

z= Z (pl)' Pl >°
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Then [Z]can be segregated into two parts:
_ . (a) (a) (b) (b)

[z] = [Zn le} = [Zn(a) Zy2 (a)]-. +[Zn(b) 2y, (b)-l
B Zy2 Z2; Zi;" 252 ] Zy2 Zy2

——

e —

4 -
PPZy -PZy)  PIPZ, ~ P1Z),) | [P(PZyy-Py2yy)  Py(pZy,-Py205)

72 Z 2 2 22 .
P "Pl P -pl P 'pl P -Pl 1
= + (6.15)
PIPZyp-PyZ1p)  P(PZap-PyZp5) | |P(PZ1p-Py2yp) Py(PZ2p-PyZ5p)
2 T 7 7T
P "Pl P 'pl P 'pl P 'pl

— —_ e -1

If the positive realness of these [Z(a)] and [ Z(b)] can be proved, ‘[Z]‘ , the series

connection of the two, will also be understood to be positive real.

5.4.2 Positive realness of [Z(a)] and[ Z(b)ﬂ]

Since [Z(a)] and [Z(b)] are symmetrical matrices, they can be proved tc be

positive real if the quadratic forms
{
. (a) 2 (a) (a) 2 (a)
Zin =t Z + 2.t Z +t, Z
1 11 11712 2 T22 (6.16)

. (b)) _ .2, (b) 2, (b)
Zin =ty Zn + Ztltz le(b) + t, Z22 '

are positive real functions or any real coefficients (t1 ) tz). First, take the part of
Zin (a) on the imaginary axis, it can be transformed as:

@ 4ae, le(a) )’ zzz(a))

. (a) ,. _ 2
Re Zin (Jul) = Re (t1 Z11

Y- (a) (a) 2 (a)
=t," Re 2, + 21, Re 2, + 1, Re 2,,
ty r{ t, (a) (a)} 2 { (@)y2 (a) (a)}]
= —— ReZ + ReZ -{(ReZ - ReZ ReZ
Rezn‘(‘)'—a l Y 1 12 (Rez,, 1 22 fo 1o
S
Therefore ReZin'®) (ju)) can be 20 if

/

holds. Put eq. (6.14) in the above expression, then it becomes
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s -‘n Z
P(PZy,-PyZyy) P(pZ, . - pZ,,) : P(PZ,y, - 91Z;5)
- U Re il vz _{Re 12~ P1%2 }
77
P - P P =N P -P
-w.2 Rez,, (jw) -0, 2 Rez,, (ju:) ~w? ReZ,, (Ju) 2
. 1 y b 1 22 U@y _{ 1 ReZyp Uup)
T2 T2 T2
"¢t "y tr) TR e |
4 |
wl P2
=~ —, [Rezy(u) -{Rezj,tep} ﬂ (6.19)
(“’1 +P1 ) -

which is > o from the condition that [ZJ is a positive1real matrix. Thus it has been
shown that ReZin(a) G ul) 2> 0. Similarly, asto ' Z(b)J also, one has

N2
Py(PZy - Py2y) P(PZ;, - P1Zpp) o Py(PEp mpZpl
e yA v Re v 5 - '{Rc > yi
P =P P - PN P - Py
2 2 s 2 2
i P, ReZu(jul) y P, ReZzz(jul) { ) Rele(jwl) }'»
2 g
={ “ + Plz) '“12 + Plz)
4
P : i
= (——lz+—z;2— [Rez) Gu ) RezZ,,(u) - { Rele(jul)},‘_‘ 2T 20 (6. 20)
w P . .
1 P, ’

-0 that ReZin'? (ju) 2o holds.

Next, poles of Z(a). Z(b) will be such points that p = + P, or the poles of Z, but
the point p = p, cannot be a pole because the factor P-P) appears in the denominator
as well as in the numerator. Again, since Z is an element of a positive real matrix,
it has no poles on the right half p~plane. Therefore Z(a) and Z(b) are analytical on
the right half p-plane, and consequently the quadratic forms Zln(a). Zin(b) are also
analytical on the right half p-plane. Suppose Z(a) and Z(b) have a pole at a finite point
pP= jul on the imaginary axis, then the pole will coincide with that of Z, with the per=

taining residue w 2
i

- ——a (6. 21)
(“i + P )

which is positive. Here a is the residue of Z at the pole p = jwi. and is positive.

one has
2

a;?) - 22 20 (6.22)




60
PIBMRI-1048

when either Z11 or Z,, has a pole, or even when Zil' Z,, and le all have a pole.

Therefore the inequalities

{a),. . (a),. r (a),. N2
ReZu (Jui) ReZzz (Jui) - lRele (Jui)/,] 20 (6. 23)

b),. b),. : (b),. m2
rez) jo,) - ReZ,, P ju,) - {Rezl2 )(,ui)ﬂ >0
always hold, so that residues of Zin(a), Zin(b) at their poles are always positive.

From the above, it was proved that Z(a)] and [‘—Z( )] are positive real matrices,
(a) (b}

. because Zin and Zin

satisfy the coaditioas to be positive real functions. The nec-
essary and sufficient coaditions, referred here, that a real rational function W(p) is a
positive real functioa are (i) its poles 02 the imagzinary axis are simple and the resid-
ues are positive, (ii) Re W (jw) 2 on the imaginary axis, and is analytical on the right

half plane.
5.4.3 Positive realness of tY']

Since [Z b)] has beea proved to be positive real, its inverse matrix [ z! )]

must also be positive real. Rewrite [Z( )] = as follows:

. |
[ P (P 2y - P 2y Py (P 2y - Py Zp))
2 2 2 4 !
P°-p P -p ;
[z0) (p = ) (P 2, - Py Z
§A = Pz P2 12! Py P- 235 - Py &2,
y J—a 3 7]
P -p P -0 3
(p2-ps2)/ 2y By Z - (02 Py Zrs)
L P HVEY [ PZ227P1%227'P%127 P12
— |
(P21 -Py2y) (P222-P1Z25) - (PZyp - P1Zy)) L -(P213-PyZ1p) P2y P12y
z - Z
S S 1’-] 24 [v (p) (6. 24)
}]Z27%2 [%12 %1 1

Also, since the entries of [Z( )] have a zero point at p = o, [ Z(b)J = has a pole at

p = . Letits residue matrix be [Yoo]’ it belongs to a positive real function:

(235 - Py 3200 / Py
M * A o
(211 - P13y ) (222 - P122200) = (%127 P35
. ™1 PPue) / P
Y2200

2 2o
(2 " PPng) (%22 ~ Pi*22e0! ~ 12 P20 % (6.25)
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2
Y Y _ 2 _ l/pl >0
lw 220" Y1200 =

Z =
(2)3-Piane) (222°P1d2200) = (2127 P121240)

Here aoco denotes residu¢csof Z atp= . Thus

222~ P1%2200 20

(6. 26)
on - pl.alloo : o
hold.
P T Pia2250)/ Py 5
Nl 2 = o0
(23~ P! 2227 P1%2200)" (2127 P12120
S k. 0 N
220 (2os - ) (2, - pa ) - - )Z = o (6. 25)
1 - P1Miw’ ‘%22 " P1*2200’ T '*12 T Pi*M200
2
1/p
Yy1...Y -y 2 1 >0
1o '22 120 s e =
NP0 (2227122200 * (F127P121200)
1/ P
e 3 T 2
%22 " M1z - p M2 20 - P1%22P1200 M12% 2200/ %22 (6.2
22 320 355, (2227P12554)

The second term in the denominator in the above expression is positive as it is

the deteriminant of the residues at the pole of Z. and the third erm is positive owing
to the relation (6.26). Therefore

Yum > .__.——_.]L-—_.z-— =
p _h%227%12
Z22

%l- Yu (pl) >0 (6. 28)

holds. Similary one has

z
Y2200 > 1

1

= — Y, ,(p,) o

—7 5 Y22lp (6. 29)
P %3%227%2

Separate the pole p = o from [_Z(b)__] -1 :

[2m] 1 . [jvm}]pq.[zm ®)] -1

(6. 30)
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then[ Zm(b)]'l must be a positive reai matrix because it is the remainder of a posi-

tive real matrix after separating the pole at p = oo.

From Eq. (6. 24) and above relations, one has

)= (2717 s {fa]- 5 (¥ nb) o

1 1
il = 5, Yl Y - P Y, (py)

]
H

= [_zoo“’)]'l P 1 p (6. 31)

Yo = 1Y, (e
2o By Yol Yapq tp— 22 7L
As to the entries, one has, from (6.25), (6. 28) and (6. 29),
Yo - o Yy (py) 20
Lo~ p "I Py

. oL
2200 12 YZZ(pl) 2o

: 6.32)
1 1 1 2 (
‘{Yllm Y Y11“’1)} { Y2200 ~ p” Y22“’1)} - {YIZm b le“’l)}

{
S
~

.2
- Mo 2220 ~ 1200 >o

) Y
(23255 2, ){‘211'91“‘1100) (235P122000) = (3127P131200) }

Thus one can see that {[ym]- -1—5 [Y (pl)] } p is a positive real matrix. It turns out
that lY']' must nzturally be positive real, because it is given as a sum of {zm(b)]'l

ot () [T}
One can trace the proof also by using [Z(a)‘l 0

Although the explanation has been made on a four terminal network as an example
one can in general prove the positive realness of [[Y'] in case of an n-terminal-pair
networks, the only difference being the complexity of the computation with the matrix

n lines and n columns.

6.5 Physical meanings

1f one solves Eq. (6.12) with respect to [iY(p):"', he obtains EY(p)} = [p [Y(pl)l o
o (Y 1]+ [, (1w p[YR)]T Y'R] )

< . . . - =1 . - -
= [[reep] ™ F"l_*[v(ppj Ty e][ve)) N[y )] ALY gl] 1 (6.33)
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The term [Y(pl)J] al [Y' (p)] [Y (pl)] R easily be shown to be positive real,
because [Y(pl)] and [Y' (p) ] are positive real matrices. All matrices on the right
hand side of the above equation are positive real, so that one can give the network in
the form Fig. 6. 5(a).

Also obtain [Z(p)] 5 -1
[z = [[¥ep] & (v U frep] [v o] [¥ep]+ v -zl]J (6 34)

This may be representec in the network Fig. 6. 5(b).

It seems as if [Y' (p)] has a degree two highter than that of [_Y(p).J s from
Eq. (6.13), but the numerator and the denominator have a common factox (p-pl)z, which
can be eliminated, so that they are of the same degree. In case of pure reactances, one

can take off a factor (p + pl)z. and will have a degree two lower.

As Richards applied his theorem to extract a unit coaxial, the extended theorem
may be applied to the extraction of a coupled multi-wire line. That is the case P = i,
as explained in paragraph 6.3. But one must pay notice to the restrictions of a coupled
t wo-wire line. The proof, stated in the preceding paragraph, holds, and the restric-

tions on [Y(l)] are, from the positive realness,
2
Yn(l; 20, Yzz(l) 20, Yn(l) Yzz(l) - le(l) :o (6. 35)

whereas one has ti:e restrictions
I,d>k>o (6. 36)

if he is going to make the coupled 2-wire line in a shielded 2-wire line. Expression
(6. 35) becomes

W >0, d2o, d -k 2o (6.37)

One should note that the restrictions (6. 36) are severer than these.
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CHAPTER 7. Design of symmetrical networks(38)(39)

If one extrarts a two-wire line in the way described in the preceding chapter, the
degree of the network parameters will be lowered by 2 for every one extraction of a
line. The remaining network preserves its property as a physical one, so that one can
again extract a coupled 2-wire line. Repeat the process, the degree of the network
will come down, finally to zero, and the synthesis will be completed. From this reason,
the extraction of coupied two-wire lines can be a significant procedure of networks by
using the procedure along with the methods of synthesis, say, extraction of unit coaxials

or taking out shunt elements.
This chapter describes the synthesis of symmetrical netwer....
1.1 Extraction of two-wire lines in symmetrical networks.

Let the network parameters [Y] be given at first. If it is symmetrical, one has

Y, = Y, (7.1)

Therefore the line constants, of the coupled two-wire line to be extracted, are, with
the use of Eg. (6.7),

u® Z. (M, d=1, |
= = » = ’ ,
Sy J— 1
n M-Y, 0 L 7.2)
_ Y N
Y Z,m J

The network parameters of the remaining network are, fram Eq. (6.9),

YyP) = Y,,' (p)

2 a )
¥}, 0-p%) - —E {I'ZWQP‘Yn'“lz)} "W P(Yy2 y 2
W _(1-k°) 12%)
2 20 2, 2 2
1-2W p(v, - kY ) + W 2 (- K% p? (v, 2 - v, %) L
(7. 3)
. 2, k
. _ {12(1"? ) - W‘L—o
Y12 (P)® 1-2W p(Y..-kY..) + W_(1-k%) p“(Y..% - Y., -
=2W p(Y);-kY,) + W, pYy =Yy, )

’[_Y'] iz already proved to be positive real, so that one can go on the synthesis by re-

peating the extraction of 2-wire lines.
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7.2. Method of treating the matter in symmetrical lattice netoworks

When the network is symmetrical, one may represent it in an equivalent symmet-
rical lattice network, which makes understanding easier and calculations simpler, than
to extract a coupled two-wire line as described in the preceding paragraph.

Let the lattice elements of a symmetrical network be Za and Zb. they have the

following relations with network parameters:

2 s AR 1
Clp) Y,,(P) + Y ,(p)
- (7. 4)
z ) = ARLA 1
C(p) Y = Ypolp) 1,
Putp= 1, -
z (= 2+ = W_(1-Kk)
Y3+ X, f (1.5)
z, = 1 = W_(l+k)
¥,,0) - ¥;,0) ,

which yield line parameters:

2 1 '
W= {Za(l) + Zb(l)} -

Zb(l) - Za(l)

k =
1
Zb(.) + Za(l)
Take out a unit coaxial, of characteristic impedance Wo(l-k). from Za(p) by Richards'
process, the remaining two-terminal network 2' a(p) will be
, Z,() - p 2, 0)
Z' @ = 2,0 =5z 5

1-W_(1-k)p(Y ) +Y,) 1= W_(1+k)p(Y,-Y, )

) -p/W Ik 7 =W, +Rp(Y))-¥)5)

2, 2. 2,,2 ¢ 2
1-2 W _p(Y)-kY,,) + W_“0-k7) p“(Y, “-Y),

2.
¥, 04 0% + ¥, 0- PP - &%‘}-‘f_’m - W_(1+k)p(Yy %= 7,,7)

1
Yy, ()Y, (p)

(7. 7
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Similarly, extract a unit ccaxial W°(1+k) from Zb(p). then the remainder will be
2, - pZ (1)

Z,'(p) = Z,()

= 1 (7. 8)

Y, (8 - Y5 (P

These values of Za' {p) and Zb' (p) are identical with those element values that constitute
a symmetrical lattice network representing the remaining network [Y' (p)] after the
extraction of a two-wire line from [ Y(p) ] . This fact means that the operation of ex~
tracting a coupled 2-wire Yine (W, d = 1, k) from a symmetrical network [.Y(p)] can be
replaced by the operation of extracting coaxial elements Wo(l-k) and W°(1+k) from the

elements of the equivalent lattice network.

It is simpler to treat the matter in a lattice netwerk and facilitates understanding.

7. 3. Design examples(26)(27)(4o"43)

The design procedure of symmetrical networks will go on as follows;

(1) Give network parameters (A, B, C; Yll' le; or le' le)

(2) Obtain elements Za' Zb of the equivalent lattice network

(3) Realize Za and Zb in bar~-type by Richards' method (Eqs. (7.7), (7. 8). TABLE 7.1)
{4) Determine the line conrtants of the coupled two-wire line from the corresponding
line elements of Za and Z'o' (Eq. (7.6))

[Example 1] Design with Q-functions.

Assume the given conditions that the deviations of input and output terminal resis~
tances should be within 5% in the range 0 ~ 0. 8207 of the frequency w (w = tan pl), and
that the attenuation (ao) should be greater than 4 nepers in the frequency range 1. 2185

~ . Here one should take the Q-functions

+/ pz+l

p2+0. 637

z 2
o _/0.665 p4.57 b _ P
R vV T5 [T SRS S e

from which Za and Zb are determined:

2
Z = Z_tanh §_= R -R(P +1.zs7)
2 1. 57 (p~+0. 637)
2, = Z coth o . R 0. 665 (PZ+0. 637)(p2+1. 57)
b~ Co ot ¢ e

pip +1)
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The bar-type networks will be obtained as shown in Fig. 7.3, referring to the second
line of TABLE 7.1(a) and the third line of TABLE 7.1(b). That is:

Wa1= R, waZ = 0.285R, Wa3 = 0.285 R, Wa4 = o

Wb1 = 1. 4R, sz = 1.355 R, Wb3 = 19.15 R, Wb4= 19.15 R

From these values, one can determine the line constants of the coupled 2-wire lines:

1 1 i}
W =5 (W +W )= 3 Q1+L4R=a 2R
S S 1.4 -1 )
M w ol o s | = 0167
kl al

woZ = 0. 82R, W°3 = 9. 2R, WO4 = 9.58R

kz = 0.652, k3 = 0.97, k4=1

In Fig. 7.3 are shown the network structure and the frequency characteristics of Zo and
a. (90 =a + 3[30).

[Example 2] A network of Wagner character.

The effective attenuation @ of a network of Wagner character n = 5 is
€ ZQ = 1 - plo

|
|
F and the network parameters are

A= (1+/B)ph+ (34 Sy pl+1
B = Rp {(3+J§)p2+(1+J‘5)}

Thus the arms of the equivalent lattice are

| z B _1+J/5 p
a - 2
’ A-1 2 pha
1+v5 2 -
, - B _ —2—p+1
b= =
| AHl 2. 1+45
| plp"+ ——)

Represent these into bar-type by TABLE 7.1, one has Za and Zb in Fig. 7.4, and after
converting the network into coupled line type, he will have the desired one. The struce-

ture and the characteristics are shown in Fig. 7.4.

-
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Example 3 A network of Tchebycheff characteristic with no attenuation poles.

The attenuation for n = 5 is given by

¢Z°= 1 + -lz-+_lz_. cos (10 cos'lw)

where the maximum attenuation in the pass band is taken to be 3db. Network
parameters are obtained as

A=9.1749 p* +8.7649 p% +1
2
=P (32p% + 42.306 p° +11.486)
R

{from which one can determine

0.7607 p ; g T6179p% ¢ 1

z =R ,
2.6533 p2 4 1 b p (26.346 p©+ 7. 308)

a

One can develop these Za and Zb into bar-type ones and deduce the coupled line
network as shown in Fig. 7.5, with R = 1 ohm. In the figure ig also shown its
characteristic.
Example 4 Tchebycheff cha.acteristic with attenuaiion polas.

Let the maximum attenuation be 0.5 db in the guaranteed pass band w = 0 0. 8207,

and n= 5. Then one has 20
s 5

1+ ¢(p) ¥(-p)

2 2
wip) = 10,512 ple_ £ 0:6231) (p _+ 0. 2756)
(0. 6251 p° + 1) (0.2796 p” + 1)

which yield

9,278 ¥+ 8.107 p_ ¢ 1
0.1748 p¥ + 0. 90a6 p° + 1

A=

2
_ Rp (5.151p" + 2.605)

B Z 7
0.1748p° + 0. 9046p° + 1

From these values one can determine:

5.151 p
= 4
2 9,453 (p~ + 0. 3516)

5.151 p + 2. 605
Z, =
b p(9.103p2 + 7.202)
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The network and its characteristic are shown in Fig. 7. 6

CHAPTER 8. Design of antimetrial networks

The antimetrial networks are the most frequently used ones, next to symmetri-

cal ones, and here will be examined their design procedures.

8.1 Extraction of coupled two-wire lines in antimetrical networks
The definition of an antimetrical network is, in terms of the four-terminal para-

2
meters, BIC = R (R is constant). Rewrite this in Y- parameters, one obtains

2 AD-1 C 1
Y..Y - Y = S e D
n2z =~ e y " (8.1)

If one extracts a line from a network satisfying this condition, he has, from a
network satisfying this condition, he has, from Eqs. (6.6) and /6. 7) :

Wo 1 Y,, (0 R
e — 22 =RY,,0)=

8 R 1 n-v,%q W &

a=Tn @ . Y, )

Y, Yo @)

(8.2)

for line constants. As for the remaining corcuit, one has, from Eq. (6. 9):

2. Wod
' (o) =L _ %y - - -
Y, ') -,%_{Yu(l p%) o v {2 -wop( Y +dY,, - 2KV, )}]

Y,,' ip) = e ez ) o i p{2 - Wop (¥, +av,, - 2x¥ ')}-
22 P 22 "“‘ZR 1 22 12 (8. 3)

o L 2 Wok -
Y,,' (p)= - [le(l - P - p{2-wop (Y,,dY,, znlz)}]

2
V= (l+p )-WOp(Yu+Y -ZKYl

22 2)

8.2 The antimetry of [Y '] nctwork
It is evident from Eq. (7.3) that a symmetrical network ( Yll= YZZ ) remains

symmetrical ( Yl 'e YZZ' ) after an extraction of a coupied two-wire line (d=1).

1
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Also an L - type network ( Yll = le ) remains to be an L - type one ( Yu'z le ")
after an extraction of a coupled two-wire line (d = x ).
Let it be examined whether [Y'] remains antimetrical or not in case of an

antimetrical network. Using the values Eq. ( 8.3 ), one has

2

] ] 1
Y Yoo =Yg,

, > W 1
[Yu( 1-p") - -—-:,_-’- dp{2 - Wop (Y +dY,, - 2xY), )}]
R

. 2 Wo L

2 Wo . - z
L[.YIZ (1-p7) - g2 "P{Z Wop (Y, +dY,, ZKYIZ) ] J

-
=

2 2
{( 14 p) - Wop (Y, +dY,, - 2kY,,) }
2,2 2 2. 2, 4
((1-p (Y Y,, - ¥ ,2 1+ 4wo? (a-«° ) p/R ]

2 (. 4 2. 4, 4 22 2. ,.2
J+ (Y, +dY,, - 2kY), ) {wo (a-x"1p /R + wop” (1-p°)/R"} 1}

3 2. 3,4 2,2
k-(Yn+dez-2xle){4WO (d-x")p /R* + 2Wop (1 - p°)/R }
=

2 2 2,. 2
{(1+p ) - 2Wop (14 p ) (Y, +dY,, - 2kY;, ) + Wo"/0 (Yu+dez-2szz)}

2
Puthere Y, Y,,-Y,, = l/Rz, Wo (d - re )/R=R/Wo, then

12

2.2,.2 2, 2 Wo 2
(1-p)°/R"+4p"/R" -2 ——p (1+p ) (Y +dY,, - 2Y),
WoZ 2 2
+ — P (Y, +4dY,, - 2kY ;)
=
1+4po) .2 14p2 +AY. .- 2kY )+ WolpZ ( Y. +dY. .- 2xY.. )
1
p P,
) (8. 4)

Thus it is proved that [ Y! ]is also antimetrical. that is, etract a coupled two-
wire line [ Y (1)] from an antimetrical network, then the remaining network [Y']
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is also antimetrical.
One may staie in general, not only in antimetrical networks, that the extrac-
tion of a coupled 2 - wire line does not change the property of the network but

preserves it.

8.3 Design examples {26) {27} (40~44)
[Example 1] Wager network, n= 4

The effective attenuation is, for n = 4,

€ Z= I+p
and the network parameters will be obtained, with input and output resistances of

1 ohm,
A=2pt 4 (24v2)p0 41

B=C=/2/2+/2 (pt+1)p
D=(2+J?T)pz+1

convert these into Y parameters:
2
D_(2+/2)p +1

Y (pl=g=
u B oZ/2+/Z(p +1)p
A 2p4+(l+\/2_)p2+!
Y lr)=g = "
VIR HT % 1) p
1 ]
Y2 (Pl =g

JZf2+/2(p2+1)p

Put here p = 1, then from Eq. ( 8.2 ) one obtains
Wo=Y,, i) =1,2274

d=Y, () / Y,, (1) = 0.6882

K=Y, 0 / Y,, (i) = 0.1559

As for the remaining network, one has, from Eq. (8.3 ),

ZWozdzpZ + 1

(V2./2 +42 - 2 Wod )p

2 2
2w dp + 1
Yzz'(P)= SNACE

VZ/2+/2 -2 Wod) p

Y, ()=
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ZWozm;ipz +1
(VZy2+J/Z -2 Wod) p

Yi2' )=

which give line constants of the second coufp’:d two-wire line by putting p = 1:

= ' =
Wo' = YZZ (1) = 1.1617

d'= Yll' 1) / YZZ' (1) = 2. 2612

k' =Y, ) / Yzz' 1) = 1. 2329

and the remaining network becomes Yu"= Yzz"' = le" =m.
Thus one would obtain the network structure as shown in Fig. 8.1

Here is aproblem k'>], and this can not be realized by a 2-wire line over ground,
owing to the restriction ( 6. 36 ). The relation k' >1 (or k' >d' ) has a lumped
equivalent of Brune section and no contrivance has been made to realize itself
alone by a coupled line over ground; another structure should be taken into consider-

ation. First, take out the shunt caparitance component from YZZ(P) g

4 )
2p" + (2+2)p° 41 _ 2p SVt

VIR (P e1)p 2fzidz BB et 41)p

and extract a coupled two-wire line from Yll' Y320 le. the line constants will be ,

Yzz(P) =

= Yc + YZZ(P)

withp=1,

wo= Y,/ {¥,0 ¥,,00 - v, ) }

=242 [JZ = (1+/2) [/2 442

Y, )/ vy = 34/2) / (14/2)

A
]

K o= Y00/ y,, M=1/(1+/7)

[Y'] of the remaining network becomes @, from which one can obtain nothing. Take

Z parameters instead, one has
2
Y22 -./Z-p +1
Z,{p)= =
="y Y. 2 V242 p

n¥z2z - 2

11 _(2+4/2)p% 41

Z,,(p) = 3

Y)az - Y2 f2+s2p
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.Y
12 1
Z,,(p) = ==

2
Y, Y22 - Y2 2+/2 p

Z' of the remaining network ¥ becomes

1
Z“' (p) = ZZZ' (p) = le. (p)= 2 /‘\‘XZ + \/Z‘ P
which yields, with p=1,

2' ()= 2/ /242

The network will take the form Fig. 8.3
[Example Z] Tchebycheff network withcut attenuation poles.
Let the permiseible amplitude deviation be 3db, then, for n= 4, one has

2 2
E=1s + 1 cos {4 con”! 20° 4 (V2-1)7 -1 }
(VZ-1)2 +1

The network parameters for R =1 will be found:
A= T.8196 p® +8.8241 p° 1
2
D=2,3910p +1

B=C=p(4.3101 p° + 3.3489 )

* Eq. (6.9), in Z parameters, goes into

2 P “ -
z,,(-p")- Wop {1 —wm(zud tZ,, + szxz)}w 1
< >
(ZoZ,s - Z,,0)
| Wotan) u222 - %42 J
2,8 (o= _ ,
p .
Lo ———— (2, + Z,,+ 2kZ),) + (23252 -2), )

Wwo(d - k%) Wo2(d-x?)

>

2
221-p7) - Wodp{x- —-1’—--2— (2 d+2,,+ Z"zxz)}
Wo(d-x“)
(8. 5)
- = = (2,2, - 2,))
Wo(d-x")
denominator of Zu' (p)

-2, ()
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Z -
f-z (1-p )-Woxp% - (z,d+ Z,.+2x2 } ]
12 T Yoldnd) ) e 227Kz ,)

2 r (8.5)
= _L—WO(,;.KZ) (ZuZZZ- le )

'zlz' (p):l

denominator of Zu' (p)

Thus Y parameters are obtained:

2.3910 p2 4 1
p (4.3101 p2 + 3.3489)

. D _
Yylpl= §=

A _7.8196 p* +8.8241 p° 41

Y,,(p)=
£e B 4100 pl + 3. 3489)

1
p (4.3101 p? + 3.3489)

Yylp) = §— =

1f one would try to extract a coupled two-wire line directly from the network, he
will again come to a Brune Section. Decompase Yzz(p) g

2
Y,,(p)=1.8026 p + 2 7874p *)

5 = YC + YZZ (p)
p (4.3101 p~ + 3. 3489)

Extraction of a coupled two-wire from Y Yoor le yields

Wo = 2,4493, d= 0. 8955. k= 0.2640, W' =1.1492
The capacitance Y_is formed by a line of Y _(1) = 1/wc = 1. 8026
Thus the network may be realized as shown in Fig. 8.4
[Example 3] A Tchebycheff network with attenuation poles.

Let the maximum attenuation in the guaranteed pass band p = jo j 0.819036 be
0.5 db, the Y parameters for Tchebycheff character with poles, n= 4, will be

given as follows:

0. 71079 p° + 0. 21409

Y, (P = 3
p (1.19230 p© + 0. 6895C)
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2p* + 1. 72762 p2+ 0.21409

Yzz(P) 03
2
p (1.19230 p~ + 0. 68950)

F]
le(p) = 0.10883p + 0.21409.

p(l. 19230 pZ + 0. £€8950)

Proceeding in a similar way, as in the previous examples, one has

0.57083 pZ + 0. 21409

p(.19230 p%+ 0, 68950)

YZZ(p) =1, 67743 p + = Yc + sz(p)

Extract a coupled two-wire line from Yll’ Y320 YlZ:
Wo = 2.37592, d=1.1783l, £ = 0.41140

W' =1.00228, W_= 1/1. 67743

The network structure and the characteristic are shown in Fig. 8.5
[Example 4] Case n= 6

Y Parameters of a Wagner network, n= 6, are :

Y, (p)= T.4641 p 4 74641 pl a1

p(3.8637p% + 9.1416p% + 3. 8637)

6 4 2
YZZ(P) = 2p  + 7.464lp” + 7.464lp " +1
denominator of Yu(p)
1
Y,,p) =

denominator of Yu(p)

First decompose Yzz(p):

2, 7320 p4 + 5.46 pZ +1

denominator of Yll

YZZ(p) = 0.51764 p + = Yc + yzz(p)

The coupled two-wire line to be extracted form Yll' Y2 le should have, from
Eq. (6.7 )
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¥y,
o= 22 = 1. 0664

Yll(l) Yzz(l) - lel (1)

Y., (1) Y,, (i)
detl__ x1.7322, k= 22
Yzz(l) Yzz(l)

= 0.1087

[Y'] of the remaining network will be

2 2
Y.t (pye 09880 p°+0.84607 _ o goeq , O.1p740.04607 o .,
1 cn YV
P p
0 e 1. 9039 p 4 0. 84607 L8039 0 4 0.1p% + 0.84607 _ T ey
22 P . P c22 Y22
P P
0.4579 p + 0. 84607 0.1 p% + 0. 84607
Y, (p)= = P_T - =0.5579 p + ——E T =Y 'ty
12 o o cl2 12

The first terms of the right hand sides of the above expressions make a coupled two-
wire line open-circuited at the other end:
Y. ' ()
Woc ™ S22 = 1.3977
2
1 [ - '
Yc11 DR c22 M Yc 12 )

g = cu ¥

]
= 0.4923, «K_s= Yaz @)« 0.3093

YC ZZ' (1) YCZZ' (l)

The second terms Yu' » Y U, le' correspond to a coupled two-wire line

22
short-circuited at the other end:

Y,, (1)
e B0 = 2.7955

yu' Wy, M-y, M
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¥y ' (1) '
i L E) O o = 2 :

- , = 0.7886
Y22 1) YZZ 1)

The network configuration is depicted in Fig. 8.6

Chapter 9. Frequency tranaformations

Synthesis of networks with prescribed characteristic functions are chiefly
treated on symmetrical and antimetrical networks, so that Chapters 7 and 8 will
suffice the matter. Other networks may also be synthesized but will not be discuss-

ed here.

In Chapters 7 and 8, for the sake of simplicity of investigations, only L. P. F:'s
were discussed with cutoff frequency w, = 1.  Almost the same configurations will
give L. P. F.'s with different cutoff frequencies and also B. E. F., as will be examined
here.

9.1, The reference network and frequency transformation.
The L. P. F. for w = 1 takes the form Fig. 9.1 as described in the examples, Chapters
7 and 8. To have the required frequency transformation, one should use, just as in

lumped networks,

inL.P.F. p-=p/w

in B. E. F. Jwe ((p, wo 4 9.1
in |3 LA \uo o /J (9-1)

A= Wy =W wWo = ,/uluz

Here wp w, are cutoff frequencies,

wi = tan (2w fil/c) (9. 2)

One have to eynthesize the network by the use of network parameters apply-
ing the new frequency variable Eq. (9. 1) to those of the referr.nce network
(L. P. F. with w = 1). One should not apply frequency transformations to each element,
what could be done in lumped networks. The frequency transformation should be
applied to network parameters. This is due to the fact that there appear unit coaxials
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or coupled two-wire lines in cascade, that are used to construct the network.

9. 2. Frequency transformations of low pass filters

Frequency transformations of low pass filters will be illustrated on Wagner

networks for example. The frequency transformation is

P — p/“’l JC R is the cutoff frequency
Symmetrical networks

Wagner characteristic functions will yield paran:eters of symmetrical net-

works as given in TABLE 9.1 {(a). Obtain the elements Za and Zb of the equivalent

symmetrical lattice:

Za A-l Zb _ A+l . 3)

R C R C

which are shown in TABLE 9.1 (b). Apply frequency transformation p p/w, to
these values of the reference network, TABLE 9.1 (c) will be obtained. Make bar-
type networks, from these values, by Richards' method (TABLE 7.1), TABLE 9.1 (d)
comes out. Line constants w.q and W of each element in the bar-type networks have
values shown in the TABLE; determine coupled two-wire lines respective w4 and
Wy the network will take the form Fig. 9. 2. vy and K in this figure can be obtained
putting the values of w.g and Wpi given in TABLE 9.1 (d). w; and K, are dependent
on the cutoff frequency W, as their expressions contain w. The Wagner attenuation
characteristics are shown in Fig. 9. 3.

[:intimetric networlg_a]

Here the frequency transformation will be applied to Y parameters.

The parameters of the reference networks (L. P. F. with w, = 1) of antimetric
Wagner characteristics are given as shown in TABLE 9.2 (a), and consequently their
Y parameters are obtained as shown in TABLE 9. Z(b). An application of the frequency
transformation p p/q.:1 to these parameters gives their values as shown in TABLE
9.2 (c). It is taken that R, defined by the condition of antimetry B/C= R2 , is unity.

(Case n=x 2)

From TABLE 9. 2(c), one has, for n= 2,
pZ
A +1

2 2
Y lp) = 1 0)1 ' Y ‘p) o ﬁ__
1 i Y,,(p) = 12 )
g p 22 & \.72_ - P

w1
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As for the coupled two-wire line, putting p = 1, one has

2
w Y, (1) W
wo-YZZ(l)-‘{-"‘-—-_l—, d= —B - 31 ;
w, vz Y, ) 2+,
2
b A

K= 3
{

YZZ‘I) 2+ w;
where the relation d = XK requires a double coaxial structure.
network,

] [ ] t
Ty =Y, =Y, =o

In Z parameters
Z))' 0= 2, (0)=2),' (0)=0

Therefore the network structure will be shown in Fig. 9. 4.
(Case n= 4)
From TABLE 9. 2(c), one has, for n= 4,

2
(2 4-./22')—"—z +1

Y, (p) =

“1
2
p p
ﬂVZ*‘/E——(——_ +1>
w) wlz

4 2
2 o+ ey B5 41
"’14 “1
Y,,(p) = 2
V212 +/2 P (_p__ +1)
W ‘UZ '
1 1
Y, (p) = 1
12'P

V2 z+~/5.'-P-<-Efi +1>

@iN o)

As to the remaining
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Decompose Yzz: 2
- —Ez— + 1
ﬁ P Jz- (01
YZZ p) =

= YC + Yzz(P)

Che line constant of Y , the shunt capacitance, is
c
o 2l 2+ N3 o
¢ Y () JZ

As for the coupled two-wire line, to be extracted from Yu. Y2 le. one obtains

YZZ(I) \/i'f wlz

w = =
° Y0 y,,0) - YR /2477 o,

Y, 1) 2 +/2) + wlz
ds= = )
Yzz(l) \/2- + ©;
2
Y,,(1) w
ew 1200 2 G

Yzz(l) vz + wlz

The remaining network is an open-circuited line with

2
W (l+w1)

2 +/7

w'!s=

The network structure is shown in Fig. 9. 5.

The Case n = 6 may be treated likewise as already shown in Chapter 8
ﬁ:xample 4J » but will not be cited here to avoi complecation. Antimetrical L.P.F.
have, in general, the same form as the reference one, only the line constants are

different for different w;. Curves of attenuation are shown in Fig. 9.6
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9.3 Frequency transformations of band stop filters.

In band stop filters, one should make use of the frequency transformation

e = {2 ()}

o

-1

A= wy - wp uo- ‘/“’1“’2

Wy and », are the cutoff freyuencies. Here again those of Wagner characters will be

taken for exampies.
[Ssymmetrical networks ]

An application of the above frequency transformation to Za and Zb of TABLE 9.1(b)
gives values shown in TABLE 9. 3(a). Their bar-type representations, due to
TABLE 7.1, will be obtained as shown in TABLE 9. 3(b); Woig and Wb, . will yield

coupled two-wire lines as shown in Fig. 9. 7. Symmetrical B. E. F. can be obtained
generally in this form.

Ekntimetrical networka]

The matter will be explained on Wagner B.E.F., n= 4, as an example.
Network parameters of the reference L. P. F., n= 4, are given, from
TABLE 9. 2(b):

2 +v2) pt+1
VZ/2 +JZ P+l p

Y, (p) =

1
ﬁﬁ -l-\/Z_(pZ + 1)p

le(P) =

2
VZS2rT 0240 22407 o+ TR

Yzz(p) =

The frequency transformation p—A p / (pz + Woz) will be applied herein; first

one has:
JZ Ap

ST (g WA

o

Y _{p) =
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This consistes of two lines wc and ch' of which

1

Y () = S Y-S

w, S0+ uo")

Applying Richards' procedure to Yc(p):

1 Y (p) - p/W F
Yc' (P) o (o cl = )
Wcl l/Wcl - ch(p) wclwo
Ycl' (l)' 1 = l = \/2' A

2 2 2
LI W@, 2 +JZ 0" 04w %)
Rewrite the Y parameters in Z parameters:

ﬁp2+l

Z,,(p) = v Zy,(p) = - e
1 2+ p 12 2+J/2p

(2+/?T)pZ +1
/Z +/2 P

Z,,(p) =

Apply the frequency transformation:

(pZ + woz)z +/2 AZ pZ

Z,(p) =
2 2
2 +2 Ap (p + wg )

(2 + w0 )+ 2w2) 8l p?

/2+/Z_Ap(p2+ w 2)

Zzz(P) =
(o]

2 2,2
-t

Z,(0p)=
12 2 2
2+/2 Ap p tw )

Put p = 1, and obtain the coupled two-wire line to be extracted:
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(1+ woz)z +Z Al

2 4/2 A (14 uoz)

1+ woz)z + (2 +42) A2

Wo= 2yli=

T e >
/2+/2 A1 + w,)

1+w°2

VA

The remaining part of the network has parameters, by Eq. (8.5),

wOK = -le(l) =

W -nptal 0+ woz) +{/'2‘ A4woz s+ woz) (Zw°4 +/2 “’oZ)I:

4 23] 2 2, [ 2 2.2
rotaroe }plroelare H{draro J

Zy' (P = 2 2 2, 2 2 2. 2 2
2 4+/2 W, (l+w°)Ap{(l+w°)p +w° (1+mo )+ A W, }

1[(1 s are et e{e s A e Fr o Hlze te Brao Y
4 2.3 2 6 2 2 2.2
. Lty 0+ 0, ] 2+ b arud){ &+ 0o P}

denominator of Zu' (p)

2 2 2 2 4 4 2.31 2
-A (1+w°)p4+{A (l‘l'mo ) Zwo + w, (1*1-«:0)};).‘l

+ w°6 1+ woz){AZ + 0+ uo")z}

ZlZ' (P) =
denominator of Zu' (p)

Conseguently the line constants of the coupled line to be extracted are

¥ 2.2 2.2

o 2l v 140 ) }e 14 w & 2ot ‘.,04(“‘.,02)“
——= 2 2. ¢ 22. 2 2
2 +¥2 wg (1+w°)A1(1+w°) + A W, }

Z)Z

denominator of W!

W'=Zu' (1)=

2 2 2. 2 6 4 4
(Z+/Z-)Az{uo A+ (14 w, }+ (1+ w, )A (wo + Zwo -1) + W, (H‘moz)4

W'z, (1)
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2.4

6 4 4
<I'Zm‘:’ —l)+u° (l+u°)

2 2
(1+ A
WK'!' = . z'lzu)‘ uo ) (Uo

denominator of W'

The remainder Z" (p) is

4 2 2.3

A +a (140 2,4

2
+u° (l+u°)

Z," (p)=
11
J2 +/2 w 4(14’& Z)AS{A4+ZAZ {1+ w ZZ+(l+u Z)3 {1+ w 4)
o o o) o o

2,04 2, 2 2 2 2 4 23 2,(2.2,,, 2
L Wre{de e farehulavz Srivetare, Ve 2+{al el Hitw *f}

2.2 2.2
plo ‘8% + (140 5}
] - n
= Z5," (p)= -Z,," (p)
The coupled two-wire line to be extracted next has

W' = zll. (l)

{A4 + a2+ ..,02)3 + u02)4}[(l + uoz){A4uoz(l + uoz) (1+ Zuoz)

+ 0304(1 + 002)3 + 1} + { AZmoz +(1+ uoz)z}]

= 4 2.3 4 2 2.2 2.3 2 4 2.2 2
/z+/zu° (1+w, )A{A +ZA(1+..,°) Hite ) (te o )}{ A +(1+u°2)

uO
d* = x" = 1

The last element is, by Richards’ procedure,

2
m wn
w = (X o

Thus B.E. F., n= 4, has the structure Fig, 9. 9.

One can go on the same way for n z 6, but will be ornitted here.
[Case w_=1]
- o

The frequency transformation that has been used in band stop filters is

()

A\l
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where A=x Wy - Wy u°£ =W w,e In case w, = 1, one has
-1 -1 2
{l" (p+i)} =aprLy)  m lepe)r L 1-w P
2 P P 14 p° ©) 14 pt
Put

p=jtanBl, w =tanps

then
2 .
I - tan ﬂll j tan Pt tan 201
. = J —
tan ﬁll 1+ (jtan ﬁl)z tan Zﬁll

This value will be represented as p' /wl' , if one put j tan 2pf = p', tan Zpll- ul';
that is of the same for as p/;.;l of the frequency variable of L. P. F. The only
difference is that the length of the elements are twice as long (22). Thus one can

treat a B.E. ¥, as an L. P. F. when w, = 1.

9.4 Numerical examples of line constants.

It should be examined what values of line constants will come out constituting net-
works designed by the method above, on an example of L.P.F., n= 35,

The line constants of L. P. F. of Wagner charzcter n= 5, as given by TABLE 9. 1(d)
and Fig. 9.2, are

1+/5 1+/5 ]
[A] W, W +
1 1( 1 2
2

! 2
W1= +
< 1+ w? | $ 185
1 " 1
f
1+/2 (uz+1+/s_><1+/§u¢+zwz+1+ 5)
—_— 1 1 1
1 2 2 2 2
wzz___. +
2 2 1+V5 1+/5 2
1 1 > 1 > 1)
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[ 2. 145 14+/5
ul ul + 1
1 2 2
K=
ZWil L s145 2 14w
wrak ‘

2
(“’1 +1+/§)(1+/§ "’14 . zulz 2 1+/§) 14+/5
o L 2 2 2 /2
2w 2
2 1+/§m1 1y Lt "’12) 0 (14w )
s 2 2
K3=l

Fig, 9.10 showa the variations of these values with respect to w,. One should notice

that the characteristic impedance of a shielded two-wire line ca; be made easily in
the range from 10 to 200 chms, but very difficult to be below or above the range.
Assume the nominal impedance R, of the filters cited in the examples, be 50 ohms,
then the range W/R = 0. 2~4 is realizable without difficulty; this corresponds to
tan“l w = 21~ 53° from Fig. 9.10. If the given requirements go outside the above
range, one cannot make line elements owing to the need of too thick or too thin
conductors. Therefore it is necessary to examine the numerical values of the char-
acteristic impedances in the actual design of filters; there may occur some cases
where one can not build a network, even though the design may be theoretically
possible. In this sense, one should consider several network configurations of the
same characteristic, compare line constants and structures, and choose the best

fit one for the purpose.

Fig. 9.11 and Fig. 9.12 show networks with the same characteristics as that of
Fig. 9.10, but with different configurations. The network Fig. 9.1l is a parallel
connection of two coupled two-wire lines which represent the first and second terms

of the partial fraction expansions:
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P

R _ 2p

+

@
z (1+/3) w 14/5 p?
b 1 14+ 222 P
2 e

given from TABLE 9.l{c). In the network Fig. 9.1l, the range of easy building is
tan"] wp =24 60°, being wider than the preceding example.

The network Fig. 9.12 is the one that realizes the zecond terms of the above in
a 3-wire line structure; here the range is l:an.1 w = 24 68°, being even broader than

the preceding ones.

As seen from the three examples cited, the range of practical realizability differs
with the structure adopted, so that a designer should take various network structures

into consgideration.

Those with bandwidths especially narrow or wide can be made rather simply by

other design procedures, as shown in Chapter 5.

9.5 Additional remarks

As described above, LPF and BEF have been shown to be deduceable easily from
reference L. P. F. by frequency transformations. The problem, whether H. P. F.
and B. P. F. can or cannot be deduced in the same manner, is difficult, and is left
open to the future. The first point of the rroblem is in obtaining a series capacitance,
which will need the use of a three-wire line (for example, the network TABLE 4. 3).
The next is that a negative coupling coefficient would appear (if one executes the
extraction of two-wire lines in a simple manner), which cannot be realized by a
two-wire line over the ground (including 2-core cables), and perhaps lines of more
wire or 4-wire lines without ground will be needed. This situation is very trouble-
some from practical point of view, and will not be attacked any further. The author
has his expectations on the ladder nctworks, Chapter 4 and narrow band filters,

Chapter 5.

Thus one will notice that the design procedure based on the extraction of coupled
two-wire lines is not almighty, out is only a means of network synthesis. The proof
was ma e in general in Chapter 6, but if the line is restricted to be a coupled two-
wire line over ground, the necessary condition of realizability is determined by the
inequality (6.36). This can be understood because the coupled two-wire line is a net-
work with a common return. One can synthesize at least 4 kinds of networks for one
and the same characteristic in lumped networks. In coupled line networks, however,

one can have only two variations in most cases. For example take the case of
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designing a symmetrical netowrk as in Chapter 7. If the grade of Z, is less than
that of Z_, one can not realize the network unless he takes degenerute elements.
One may have other restrications or disadvantages, but the proposal will be estimated

in its value as presenting a method.
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CHAPTER 10. Experimental examples

This chapter collects experiments made on coupled line type filters. The aims

of the experiments are:

(1) To check the principle of designing coupled line type filters, if it is correct or not.
(2) To examine whether various network connections (compositing, duplexing, multi-
terminal connections, etc.), carried out in lumped networks, is also valin or not in
distributed networks.

(3} Relations between line constants and line construction.

(4) The effect of line resistances to network characteristics.

(5) Problem of combinations with lumped elements.
Here are presented 6 experimental examples:

10.1. Band stop filter: This represents " simple networks made of coupled two-
wire lines" . and assures that the analysis of Chap. 2 is not mistaken. Also the cifect

of line resistance is examined in case of a narrow band.

10. 2. Capavcitance coupled narrow bandpass filter: This examines the analysis
of " simple symmetrical networks made of 3-wire lines" Chap- 3, and checks also the
"narrow band filters", Chap. 5. There are descriptions on line resistances, dimen=~

sions of line structure, and temperature dependence.

10. 3. Two frequency separator: It is shown that, with the use of the above two
networks, the numerical results calculated in the same manner are also valid for 6-

terminal connections.

10. 4. Inductance coupled bandpass filter: This is an example of Chap. 3 and
Chap. 5, just as in 10. 2, but hi.e the point of significance is in the composite connec-

tion, and the combination with a lumped capacitance element.

10. 5. Antimetrical narrow bandpass filter: This is an example of Chap. 5,

antimetrical (special) networks.

10. 6. Wagner lowpass filters: These represent the design procedures with the
extraction of coupled two-wire lines, Chap. 6-9, and experiments are made on grades
n= 3 and 5.

10.1 Bandstop filter (18)
The top network of TABLF. 2.12 is a simplest bandstop filter. It is easy to make
the pass band narrower, and is useful to suppress the transmission of a particular

single frequency.
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{Image parameters) - Let
w, =1/ el 0 =1 (19.1)

With these values, and from TABLE 2.12, one has the image parameters

3

w-1 (w2-1)

o
[ 2 2 .
Awte_B wii/e B
v

Z =W

ol

2 2z %5
1 wi-w K
- = W N

Z,= .
02 0w | V - 1/,»_12 ! (10. 2)

/uz; l/u_lz
V o - ]

where, from the given conditions,

wel= V1-k%, W= W (1-x%) (10. 3)

Specify Wo and @ 1 then the line constants Wo. k and W will be determined from the
above three equations. Fig. 10.1 shows the frequency characteristics of its image

parameters.

(Effective attenuation) Let the input and output terminating resistances be R, then the

effective attenuation a is given from

29 -1, —1;— .L{(A -p)? --g—- - CR)Z} (10. 4)

Putting the relations
o

Z N
A=z /=9 cosh®, B=_/Z .Z_ sinh® |
1 Z o ol o2 o I\
W Tz L. (10. 5)
2 |
C-= . sinh @ , D = 02 cosh 8 |/
o o

Z -

3/201202 y 01 J

into Eq. (10. 4), one obtains

. . 2
Z 2
® . 14 1 __ozl__ (Y4 coshzeo
A W Z
o ol




T T T ———

PIBMRI-1048-62 91

V. olZoZ R \* 2 }

: — sinh 00
R Zolzoz
u4(u- Z_l 2 uZ{(“Z_l) - R )Z(“Z_l/“ Z)} 2
= 1 1 W -1 1
=147 T2 7 32 &
w_; (@ -7 1) R.2 2.2 2 J (10. 6)
(g (@ -1)" (0" 1)
o
Assume here
R/ W =1 (10. 7)
then the above expression reduces to
2 2 2, 2 2
tZu - l*%_ w (w=1"-1) "(w w-1") (10. 8)

u_14(uz-l)z(uz4? 1)

(Equivalent network) The equivalent network has the form of a single phase line of
characteristic impedare Wo with a resonant circuit in shunt at the input ternzinala- As
a specific feature of the coupled line type network, the shunt impedance has k _in its
denominator, and grows larger with smaller k. The cutoff frequency w-1 = l-kz will
in the meanwhile, draw nearer to 1, and the passband will be narrower. If one builds
up the network, for the same requirements, only with coaxial lines, the bandwidth
cannot be made so narrow, because only up to 200 ohms of _ZWO (l-kz) is practicable as
the shunt line. This corresponds to k down to 0. 6. In the coupled line type, k may be
made almost zero, so that it is advantageous for narrower bands. (Effect of line resis=
tances) If the line elements have resistances, the characteristics will be affected, the
most at the attenuation pole. As seen from the equivalent network, the shunt impedance
at the input terminal will go down to zero at the attenuation poje and the transmission
zero occurs, but if some resistance exists, the impedance cannot go perfectly to zero,
only its reactance part can be zero, leaving some resistance part. In the state of Fig.
10. 3, the output will be

(10. 9)
W 2% Vo)

Y
whereas the output for a matched load would be

2
P =E /4 W | (10. 10)
Hence the attenuation is given by

w 2
i =101 P -101 s o 10. 11
l[] w = wo- 810 '5: - °Bjp '+ Iy (10.11)




92
PIBMRI-1048-62

The shunt impedance is

2 . 1
W (1-kT)  (jw o) ) (10.12)
k

Replace jw by p, and further,

p=tanhyl = tanh (a' ;jB)

a' is the attenuation constant of the line. If this is small, then

_ _tanha'l jtan Bt ~ Q'LMWjtan Bt
l+tanha'{ jtan ft 14 af jtan Bt
Tla'l ju) N-a'lje) ¥ 'L w)eje (10.13)

Use this value instead of jw in Eq. (10.12), then the shunt impedance will be

2
Wo(l-k )

—2 latn wHaje ”— } (10.14)
k a't (1 w)) jw

Put herein w = w = 1, the frequency of attenuation pole, then the resistance part y
becomes
LWk w
Y = ) 4a'l = Wo
k l-w

4a'f (10. 15)

P
1

This value of Yy becomes larger according as a' is the larger and l-m_l2 is the smaller

{the passband is narrower).

a' depends upon the dimensions, structure and materials of the line; suppose
the line is of a coaxial structure, and the loss is due only to resistance dissipation,

then a' may be approximately obtained from the formula:

oo 1 fo M) { 1 2 1 2 }
A AVERD UBEERN Wh _D_-jrz q i
£ (MC) 1 >
. _o© { . --1-——} (10. 16)
436 log 10 (D/dl) 2D /1y Zdl/ai

where o and o, are the conductivities of the outer and the inner conductors, D and d1

are the yadii of the outer and the inner conductors. Lastly, one has

1-&)-12 1

12 8a't

:L“I' w=w = 20log,; (1 (10.17)

W -
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(Design example) The requirements on design are taken to be: center frequency fo=x
184 Mc, cutoff frequency £ = 182. 8 Mc, nominal impedance r = Wo = 57 ohms, atten-
uation peak (a)w = w, > 20 dB.

From

one has the length of the elements

-1 _ 3x1010x1r/4

L= < tan = = 2.4 cm
Znto 2w x184 x 10°

The values of w at the cutoffs are

6

Bl = tanl: 2w x182.8x10 x20.4 1) = 0.99

-1 \ 10 )
3x1o0

w,=1/w-l1=10

Consequently, from Eq. (10.3)

k= ./1 W, = 0. 1411

The values Wo and k may be expressed, in terms of the geometrical dimensions of

the 2-core cable, as follows:

W, = 138log, (D/4d,) )
D
k = loga—
1 > (10. 18)
o - p’-nt
2 7 9

where the coupling between the two conductors is assumed to be small. Put the values

of Wo and k, already determined, into these relations, one obtains

D/d1= 2.59, D/h = 1.14, D/d2= 14.3

Let the outer conductor be of brass and the inner of copper.
7 7
c,= 1.5x10 v/m, v, = 6.0x10° v/ m (10. 19)

then 2D > 38 mm in order to meet '[0] 0w >204B.
o

Fig. 10. 5 shows the network structure made for trial. For the so made network,

it is estimated that




i
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C -4
o = 7.8x10" nep/m
a w=wo 33.8dB
Fig. 10. 6 shows the measured and the calculated values of a.

10. 2 Capacitance=coupled narrow bandpass filters.

The networks in Paragraph 3.10 and Fig. 5. 8 become bandpass filters of capacit=

ance =coupled type. They are suited for narrow bands, and will be examined in details.

(Expressions of the characteristics) Those values may be used that are given in 3.10,

but the case d,,=1 will be considered in particular. Putting

[10] =0, V,/ I, = LA (10. 20)

into equations (1.13) of a multi-wire line, one has

V)= [vg] coent ..

: _ (10. 21)
= (W] [v] i sinpt
which yields
YT_ T 1
[vJ = [w] [1] > (10. 22)
Define the characteristic impedance [W] as;
¥ = wy :c ‘;l 2
1 * (10. 23)
R
then Za and Zb of the equivaient lattice are, from Eq. (3.5),
V.=V
z = L2 o ow (k) ——
a .1 i 2 P -
1773
V. oAV W, 4k, - 2k.2) 4 W (14 k,) p°
; . otV nl#ky = 204 W ek p (10. 24)
b~ - 1 2
Put, for simplicity,
W= W (10. 25)

1

and obtain the image parameters:
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]
2 1 k !
i wn_',/l-k 2
Z =27 = — = .
o P p 1 s

L (10.26)
Z l- k 2
6o - a / 2 P 1
tlnh-—z—-— = z— =:‘ W— v
/ b 2 2 ?.k1

W P TR

2 -

The cutoff frequencies Wl and Wz are determined from these equations,

2
w2=1-—i1—-—— , W= 1 (10. 27)
14k,

The effective attenuation is given, with the condition of symmetry in Eq. (10. 4),

0= 1o f-cry? (10. 28)
Substitute herein
22 2
Be —2ab  c._% {10. 29)
zZ, -2, z, -2,
then one obtains
) 2 2
- { R ‘ 5
€ = - 2k -‘
(Z5=ZRIRET S 2 —1 ||z
2 [——= pl {1-—‘2‘_R z} pr-a-21 )
Wil-k;"1 [ Wy (1-k,7) Wy (-kp) 1@0. 30)
= 0 Z FANY "
Rop{kzp ¥ GepmX')} }
7/ |
If one takes, as the value 0o’ R,
R= W, /1-k (10. 31)

then he has
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4 (1 Z"lz : 2
1) P o o
anl-(l_kzz)l- 1 ko

> (10. 32)
2
2p{k,p° (k9 }
From this equation, the frequency Wo. at whicha = o, is obtained
(10. 33)
(10. 34)

(Approximate equations near the center frequency)

In case of 2 very narrow fllter, the cutoff frequencies Wi W, and the center
frequency are all very near to 1, so that k, must be very small:

P

b 5y (10. 35)

In order that the attenuation pr-le Wm does not come close to the center frequency,

klz / kz should have an aaequate magnitude. Therefore it is necessary that

1>> kZ (10. 36)
Consider a frequency
w=z1Aw (10. 37)

where A w is very small, of the order of kl2 or kZ.

Here one has

p=j (1 Aw).pz= -(lAu)zg ~(1 2Aw) (10. 38)
with which the equations may be rewritten.
Eq. (10.26) becomes
2
7 = wll B kl tom: 9o - Aw (10. 39)
o~ ] Aw Potems T2 T —A—Z )
d w k1
and (10. 32) becomes
) K> 248w 2
»GZQ = 1 4+ ¢ i ) (10. 40)
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The values of Aw corresponding to the cutoff and center frequencies are

_ 2 _ _ 2
1 -k].Auz-o.Auo--kl/Z
so that the bandwidth is

-Aw =kz

Aw 1 1

2
and the width from the center frequency to the cutoff frequencies are
Bw,-dw_=k’/2, be b =k’/2
1 o

The bandwidth may be «onsidered also as + k.]z/ 2.

Bring the origin of the frequency to the center frequency, and put
2
, 2 .
Aw' = Au+k1/z, Aw /Tgn

then one has

<
k1/z Q1
= W11 I 4
k/Z 9-1 '\.
7
0 Au'-kz/Z — 2 [
o 1 2=-1 ’
Aaw' kl/Z Q 1 :
i
J Aw' 2
c2a =1 (—2——)= 148
€ k°/2

These have the forms of Q' functions.

Fig. 10. 8 and 10. 9 show the characteristics with respect to fi.

(Effect of line resistance) In order to examine the effect of line resistance on the

network characteristics, let the propagation constant be y. = a,'4 jB, and make
P g q i

distinctions of the lines, then one can rewrite Eq. (10. 22) as

-~ -

[V ] = [ J [;i coth yil] » V, = =1, W, coth y,!

and consequently Z_ and Zb becomes

(10. 41)

{10. 42)

{10. 43)

(10. 44)

(10. 45)

(10. 45)
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N
'

Wn (1- kZ ) coth yll

W), zklz coth Zyzl
(10. 47)

N
1

W.(l1 k,) cothyl =
& C 1 coth yzlq. tanh yzl

Here it is taken Y= Y3 because the circuit is symmetrical. Substitute these values

in Eq. (10.30), the effective attenuation will be

2
Z Z -R
t_Zu 14N ¢ a'b )
R (Z a)
W o
{coth y,1 ~tanh y,} (coth y_f~tanh y_ 1) ~ coth Y 1\
= 1+ N | V/1-k,% coth y ! L 1 2 2 2{
\ ckzcoth yll {coth yzl 4 tanh yzl) Zk.1 coth yzl ,,(10 48)
/1

N

where N is the symbol of Norm, meaning the square of the magnitude inside thc

parenthesis. The value herein is taken that of Eq. (10.3l1).

Expand tanh y! and coth yI and neglect {a' l)2 and higher terms.

L4 . a )
tanh (‘s jB)t = t2nholjtan Pl y 2 l4p
1 “tanha'l.jtan Pt l#a't p
p | [ [ o [ 4
= (a'f¢p) (1-a'fp) = p ¢a’'l (1-p’)
~ 1ta'l
coth (a'+jBt) = J y Hailp
tanh (a'¢ jB) 1 a'ls p (10. 49)
2 x
T eattp) ety L 4o 2L
P P P o !
2 .2 "
cothyl tanhyl = p 1. a'{ {p -1
g P
1 4.
" = - —E ] -
coth yl ~ tar yi P b +alf P;z—
2
coth 2yt = _12_+ 201 B -1
P P )

Corfine the examination only around the center frequency, then one may use Eq.

(10. 37), so that
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142 L 1-(1%42 20) - _— 7'
P B N 6 & 7.3 = 24w =
1-p% = (14280 5 2 > (10. 50)
P IRRZ-X)) 3 ;
- T - L T - (1-240) ‘=
:f 1¥2 Aw {/‘

With these values, one has

~

cothyl$ taah yl = j2Aw + 4a'l
cothyl-tanhyl T -j2 - 4a'l Aw ¥ -j2 (10. 51)
coth?yi T -(l1-2Aw) 40 (1+248w) T -1

Substitute these relations in Eq. (10.48), and making use of the condition 1>> k2, oane

will finally obtain
2

K
€ =1+N<f 1 -JZ(JZ Awtdal L) T (-1) >
Zk -.—(JZAu 4(1'21)--2kl (=1)

~ 4 Aw-j8a2' 1+ 2k, ° N\
* i+ N i
) ; .
2k, (j2 Awt 4ol L)+ j 2k )

2Aui-k2-14u
~ ( 1 2 1
= ¥ N —

jk

1
i, H(“’* 2 > (4021
kl/z
=140’ <4““> (10. 52)

The third term of this equation is due to the line resistance, and is related to a2' as

well as to Aw 1. Therefore this term grows larger as the las s of the second (reson-
ant) wire is larger, or as Aw 1 {bandwidth) is smaller; even at the center frequency,
a certain loss occurs

[24] - pede2t)?

W= W Aw 1 (10. 53)



fo0
PIBMRI-1048-62

{Trial construction and experiments)

The given conditions for the design are:

(1) center frequency fo: 150 MC
{2) nominal impedance R: 75 ohms
(3) bandwidth f, - £:+ 45 ke
From ihe condition (1) of the center frequency, one has, from Eq. (10. 37) and
(10. 41),
- - - 2 jon
w_ < tan (waol/c) = 1480 =1 k) /231

and ccnsequentiy the iength of the elements is determined:

L= < tan = w = < tan -1 = < ks
Zwto ° Zn Zo wao T
3 x 1010
S 5 = 25 cm
8 % 150 x 10

As to the condition (2), one has, from Eq. (10.31),

R = Wn l-kz = Wn = 75 ohms

The condition (3) will now be taken into consideration. Eq. (10.42) may be rewritten:

AuZ-Au1= (1+Au2)-(l+Aul)= w, =W,
2nf 2n f
= tan ¢ t -tan——l—- t =k 2
c 1
On the other hand
w. =140 w,
1 i
2nf, 2n f f. f f.
= 1 - o i ~ w oAl
= tan —— t = tan 'f—'l = tan — 7
o o
. Afi " Afi
A Afl tanT tanT-i— N 1+T
= tan (1 — N e °. T . o
o Af, Af.
L-tanqptan o 1- 4o
) o
wAfx' C. " Afi' 4
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From these relations, one obtains

- = r 1 -3 &

in which the bandwidth Afz - Af, = 2 x45kc. Thus kl is determined from

2 ¢ Z:a(45x103
k= 3 5
150 x 10

=3 x10 "4

Since it is assumed that kz? 0 in the 3ewire line, the structure Fig. 10.11 (a) will
be adopted, which would easily have very small kz- On the grounds that kz? 0, one
may compute k1 from the two-wire line in the figure, with the use of Eq. (10.18), re-

sulting in
dz/ D= 0.0102, h/ D= 0.963, dl/ D = 0.2865

Take
D= 150 mm

Then the other dimensions should be

dl = 42,98 mim, h = 144.36 mm, d2 = 3.174 mm

As to the loss at the center frequency, one has, from Eqgs. (10.16) and (10.19),

ay, = 7.97 x 10 -4

Putting this value into Eq. (10.53), [a] © = o is calculated to be
o

?[QJ W= W= 2.80dB

The filter was constructed; Fig. 10.12 shows the structure, Fig. 10.13 the insertion
loss characteristic, Fig. 10.14 the effect of the fine aCjusting screw to the center fre-
quency, Fig. 10.15 the change of the center frequency due to the temperature of the

whole network.

The caluclated and the measured values are in good accord, suggesting the correct=-

ness of the principle of the design.

10.3 A two-frequency wave separator

A wave separator was constructed with two narrow B.P. F. of the preceding para=~

graph. This experiment has been made to show that it is possible to calculate é«terme

inal networks in distributed elements just as in lumped networks. '
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{Principle) Prepare two filters of the preceding paragraph, one with the center fre-
quency at f;, and the other at fz. and connect them in parallel at the input. The output
terminals are separated. Two frequencies fl and fz coming to the input simultaneously
may be taken out separately from the output terminals. An additional shunt susceptance
is connected at the input terminal so that one filter does not disturb the other. This
idea resembles that of the wave separator with x-termination.

(6-terminal connection) Refer to Fig. 10.16. The two component networks have Y

parameters:

[¥)] - [Yn' YI?J' [Ys] . [:11' Yxs] 00,55

Y Y
12 YZZ 13 33

Connect them in parallel at the input terminals. Then the resulting é6=terminal network

will have the Y parameters

e .
Y+ Y" Yo Yy
[¥] = Yy, Yy, 0 (10. 56)
Y
Y13 0 Yy |

Connect a correcting admittance Yo in parallel to the input terminals of this network,

then the relation between the voltages and the currents will be

i Yot Yo + Yge Yy, Y3 E,
NN Y, Y,, 0 E, (10. 57)
I i Y3 0 Yj, Eq

- - e - -

Connect a conductance G to each of the output terminals 2-2' and 3-3', one has

and congequently he can obtain the input admittance:
Y = op— = Y #(Yy, iy + (Y "-Y“Z (10. 59
in ® E-° Y n - GFy,, Yo T TEYg, +59)
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The effective transfer constant will here be defined by the ratio of each of the
separator output In to the current Io that would flow into a matched load. 1/G from

the wame generator with an internal resistance 1/G. Thus, from

2 Y. .
1 = EG —in } (10. 60)
3+ Y, G+Y.
in in
I, = EG/2

one obtains
Yin = nm+ jBln = In (10 / In)
G1I'Yin Gs Ym A
= In - # In (10. 61)
—~— T

(Input admittance} The Y parameters of the partial networks may be obtained from

the .1age parameters of the capacitance-coupled BPF of the preceding paragraph, as
given in Eq. (10.45); Thus from

;] 6
s - [o] - o
La = Zo tanh > Zb = Zo coth-z-—
(10. 62)
Z -+2 22 2
b a b
A= g—y— v P=
b a b a
one obtains
_ _ A _ i 5
Yn = Y22 = B ° W‘L(l—ﬂru ry
(10. 63)

= = 1 =
iz T Ya T TET T W)

1f one makes two such BPF with center frequencies fl and fz respectively, he should
have a certain technique to admit the use of a common frequency, because they have

different Q's. Assume the difference of the center frequencies be small and take
f,= (f, - ) /2 (10. 64)

as the origin of the frequency, and assume also the unit of frequency to be

o . AL _ Af _ Af

AT T AL &1 (10. 65)
1 2 o
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Represent also the distance from { to ‘1 and {, by

a=(f, - £) /2 af (10. 66)

Then the parameter £ in each BPF may be replaced by
Q=0Q' + a (10. 67)
and one can use the same frequency parameter 2' common to both B.P.F.'s

The input admittances Ylin and YZin of the two B.P.F.'s are now

Y,,° ot 1.
hin T Yw T TR, TS Ty |
2 // (10. 68)
.G 2({2+a)° - ;
1 J+2 @ aa)4 2 (@42)°
Y, 2 [
Y, o= Y, - —agy—
2(a' -a)’-j
= jG vi
1 2(Q'=-a) 2(Q' -a) J
where
w,=1/6

(Correcting admittance) If two such B.P.F.'s are connected in parallel at the input
terminals, the resultant input impedance is

in' = Y1 in+YZ in
2(0Q'+a) -j 2 (' ~-a) -j (10. 69)

=jG
142" -a)+ 2 (@' -a)°

1 2(R'+ a)+ 2(@'+ a)l

Fig. 10.19 shows the dependence of Y 4 n and Y 'in onQ1' .

lin® “21i
As seen from the figure, the input admittance is not a pure conductance at frequen-
cies fi (' = ~a)and £, (Q' = a), but hag a superflous susceptance. The values are,

putting @ ' y1+a into the above expression,

1 8a?

in @' =sa =Gl —=———};C

5 (10. 70)
1_1‘_4'_431-83 14+ 4a+#+8a

Y 1
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If ais large, one has

. 2
g 8a
Y.] v o+ . T GYjG (10. 71)
[Yin] 2 -+ a 1+4a+8a
The correcting admittance should act to cancel the susceptance of the above expres-
sion. It might be ideal, if it could cancel the susceptance over the whole passband.
This being difficult, one considers good cancellations only at ll and [2. which requires

8a2

A I

(10. 72)

8a 2
[Yo]ﬂ' =a=1j G 5
_: 144a ¢+ 8a
There are an infinite number of functions that satisfy these conditions, but the simplest

one will be good for practical use. For example one may take

8aZ

Y = -jG >
(i+8a“)+aq’

(i0. 73)

{Correcting network) Let it be tried to approximate the above function by a coaxial line,
short-circuited at the other end, with a characteristic impedance W and length £, as

shown in Fig. (10.20). The input admittance of this line is

1 (10. 74)

Y'-'l‘anzﬂf
c Iy c

Take

t = ¢/ mf (10. 75)
o

with an arbitrary constant m. Then Yc will be

1 1

Y G F o-j
¢ -W_Té(l-t Tz)z—nf—Aﬂ:)ﬂ' \\
, (10. 76)
!
T=tan2:1. Aﬂ;=Afo/£o \

approximately. Compare this with Eq. (10.73), they will have the same form if

o1
WT = ——(1¥

1
8a

> )

{10. 77)
wile 18 2 anr = o
2a
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If the specific bandwidth .lﬂ(') is fairly small, then T must be large; Yc is near re-
sonance, leading to delicate adjuetment, with additional problem of Q. On the other
hand, a complicated correcting network is not desirable from practical point of view.

A certain amount of correcting effect may be expected if one chooses

W=1/G, m= 8 (10. 78)
so that Yc ? - j Guear fol The effective transfer instants, taking this Yc as Yo. will
be

45 2 0y 5 170 = )
“1z=’“%{”1 2j(n'+a) L+ 142§ (@ -a) ; __J.}
142(R'+a) 2(Q +a) 142 (Q.a) ¢ 2{2 -a)
4+ In [(ﬂ' +a) -J{ 1 +( +a)} l (10. 79a)

Vi3 = the first term of Yy2
t tn [(n' -a) =j {1+ @ -a)}]l (10. 79b)

Fig. 10. 21 shows the variation of %2 for various values of a ; some loss occurs at ' =
-a owing to imperfect correction, and the smaller the value of a, the larger the loss.

Fig. 10. 22 shows the loss with respect to a.

(Experimental results) Fig. 10.23 shows the wave separator made up of two

B. P. F.'s with the specifications.

(1) center frequencies (fl and fz) 400 and 421 MC
(2) Bandwidth (Afo) 2 Mc
(3) Nominal impedance (1/G) 75 ohms

The correcting network has characteristic impedance W = 1/G = 75 ohms, length
L= Xo/ 8.3 cm. The shortecircuiting strip is adjustable. Pig. 10.24 shows the meas~
ured data of the atteruation, in good accord with calculations from Eq. (10.79). The
loss due to incomplete correction at the center frequency, cannot be distinquished from

the loss due to resistance of the B. P. F. ' s Themselves.

The above result shows tnhat the lumped network theory can also be applied to dis-

tributed networks.
10. 4 Inductance=-coupled bandpass filters

Let us consider inductance coupled bandpass filters such as given in the top line ol
TABLE 3.6 or Fig. 5.9(g). The attenuation characteristics of these network are the

same as capacitance-coupled ones; but one can make the axial length of the network

shorter if one realizes the impedance, connected to the second conductor, by a
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capacitor of counterfacing circular plates; this technique is preferable in lower fre-
quencies. lere it was confirmed that a distributed line and a lumped element can be

combined to make up a network and also that cascading of two sections is permissible.

(Representations of the characteristics)
The relations among the voltages and currents of the network in the figure are

[v] = [v]conpt #[w] [s,] ssinpr |:
1] cospe+ [wl! [v] jsinpr |+

—
—
——
"

7 (10. 80)

—
<

L
f

—

which yield
(vl= (Wil p v,= -1,/ 2niC

where 1 kl kZ : LN
[Wl= Wy K d K '\ (10. 81)
k 1 1
: K | )
Elements Za and Zb of the equivalent lattice are obtained:
vV, -V
= 13 =
Za = T"I'— == wll(l-kz)p
1~ 3 ~(10. 82)
2 2 2 :
. - vyt V3 wll {d(l + kz) - Zkl } p + wu(l + kz)p/ijnC :
b ~ - - :
I, + 1, dwnp+1/321rfc /
and consequently the image parameters also:
2" 1
@15 IPtwrrwre
Zo =/ Zazb = Wo / 1=k, p2 (10. 83a)
’ g 1
y dp + v
Wn jewtC
- dp + 1
P WoJZwicC
vann o /2 Uk (10. 83b)
] Zb ‘ (l+k2) 2 2 .
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The cutoff frequencies w, and w 2 are those frequencies that satisfy

dp+1/anZIfC=o
) (10. 84)
1

2
Y20 We—mc) Pt wreTe C°

Hll

and the ¢enter frequency w 1L such that satisfies
w, : (dk)p+ WﬁTlef‘c_ =0 (10. 85)

The image impedance at W, is

l{zo] ST & W l1-k,) o (10. 86)

Let this value be R, then the effective attenuation is given by

20 _ 1-{ 2, 2, = R }2

b~ “a
[{(1 +k) p2 - (- k) w %} (dpt1/ W j2w £C) - 2 p’ q 2 10,87
]

=]l e
l_UOZp{(dp+l/WlZwfC)kz-klZp} )

(Approximate equations of characteristics)
For the purpose of easy examination near the center frequency, let the deviation of the

frequency f from the center frequency fo be Af. Then

o B g (1+ 2L
o I o f o T
o o 2
Zf (1+AF), OF = Af/fo (10. 88)
2nd only the region of small AF will be considered. One has the approximation:
f 2 fo
p= jw= jtaa f = jtan ! (1+AF)
(10. 89)
i- 90 2w fol
= on(l"'eo—;-—AF)u eoz—'c———
Eq. (10. 85}, which gives the ceuic:i frequency, will then be
(10. 90)

(d-klz)uo -1/ Wy2wi C=o
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©,or io should satisfy this equation. Similarly, AF corr4sponding to the cutoff fre=

quencies are

Z '
) N
aF, = A >
(d-k, ) + To'““‘o) |
r 10. 91)
2 (
% (1-%,)/ (11ky)
aF, = 2 T
2 5 2k, It ;
(=i ytid- I+RZ ) ao w /’
o J.
Suppose AFl and AFZ are small so that
2
12>k, . d>>k (10. 92)
then _ klz/d
AF) % - OF,F - (10. 93)
1+0 951 !
o
w
o]

The expression Eq. (10. 87) for the effective attenuation becon.es

et 4[4 0+K)AF G
€

[{d(l+K)kZ-Zk12K} AF-k.]Z

¢ 2 (10. 94)
x4 LK) ,p}
k
1

l+m2
(o]

AF 2 o
Vi lZxg » K= 9 —5—
1 o

This is the same as Wagner character.

(Two sections in cascade) First obtain the effective attenuation for the cascade of two
same symmetrical networks. As shown in the figure, two identical symmetrical sec~
tions (A, B, C, A) are connected in cascade to form a new network (A', B', C', A').
The effective attenuation of the resulting network will be obtained from

1 , B ' 4
26 = 1=z~ {3- C'R) (10. 95)

in which



110
PIBMRI-1048-62

B'"=2AB, C' =2AC

Z +2 2 Z 2
b b
A =2 _2 p — 2 2 .. ¢ = z (10. 96)
zb - za zb - za Zb-Za

Thus
2a 5= -}r(% - cr)? (2a)%

€

2 2 2
. 1-{Zazb-R }1. {2 Za+ Zb }
R(z, -2) J z, -2,

11

kz 2

W) j2mC

[{“ ti) pE e o} {dp b g ) -2 "3}_
] e

2
ulzp (dk, -kl)p+

2

1
d-k7)pt+——
J kl 1_121r fC }

x (10. 97)
k 2
2 2
{(dkz - kl ) pt }
L W. j2nfC
il
An approximate formula will be obtained, as before,
2 2

2a=14+ -d{(l1+K)AF 1 2d(1+K)AFz
€ 4.0+ K) k, -Zle}AF kl {d(1+K)kz-le}AF-klz

(10. 98)

4
~=1+4[d‘“K’AF} 1+4(%)
1

‘oK
This is a Wagner characteristic of n = 2. (Design procedure) Here the design proced-

ure goes as follows in narrow band requirements:

(i) Center frequency (fo)

(ii) Nominal impedance (R)
(iii)Pass bandwodth (A fl)

(iv) Length of coupled portion (I}

are assumed to be given.
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2w f
(1) From the conditions {i) and {(iv), one determines w, = tan — ° ¢
6 =2wf I /c from Eq. (10. 89)
1+ uoz
K= 90 -—-—'-;-o—— from Eq- (10- 94)

(¢} From the condition (ii), one has

w, = w W from £q. (10. 86)

=Wy ll-k u

R- [Zo Z)

from which
W, =R / w

may be obtained.

{3) Since the second conductor is a resonant line, one may take dW.L1 = 75 ohms so as
to have the oest Q- thus

d= 75/ LAY

(4) An equation
2 ~
(d-kl)wo-l/WuZtr f,C = duo-l/WuZw fC=o

must be satisfied at the center frequency, as obtained from Eq. (i0.30) One can deter-

mine the valne of C from this relation,

1

dw,l?.« ioun

C =

(5) From the condition (iii) and the equations (10. 88) and (10. 93), one has the relation

45 -4
AF, = =
1 !o d {1 ¥ k)
whick yields Af

2 1
= - = 1+K)d
kl o]

(6é) The relations between the line constants Wu, d, k, and the line structure can be
Ziven approximately by tke following expressions, under the assumption that the coup-

ling is smal.:
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2 .2 )
DE hw
W), 1381og o —m——_z
W, k = 13810 D__ (10. 99)
us 810 & .

D
Wnd = 138 log 10 —d;——

o”

One can determine D/dl' D/dz and D/ h fron. these relations. Thus, if one specifies
any one of D, d. d,» h, then all the others will be determined. Usually one specifies
Dor d1 from the considerations on Q. kz is obtained from

2 2

) D +h

(An example of preparation) A filter was made with dimensions shown in Fig. 10.29,

which has the center frequency near 70 MC. 1 he properties of this network will be
examined. It is made that

D= 5.1cm, dl= 1.475 em, d

so that the line constants will be

2= 0.175 c¢m, h= 3.65 cm

Wn = 1589 54, kl = 0.1257, kz = 0.01970, d = 0.46604

take fo = 70 MC, then along with{ = 35 cm, one has

VAR 2 §
w = tan_.g_[ = tan .2_1'__7111%2 x 35= 0. 56347
° ¢ 3 x10
2w f
0 = © ¢ = 0.51313
o c
1+ woz
K= 90 —— = 1.19979
and consequently 2
- f 2 6
_ kl o _ =al257" x 70 x 10 _
Afl- TR = 0466041 F L1999 = 1.0789 MC

Therefore the values of ¢, calculated with the use of Eq. (10. 94) will be as shown by the
broken line in Fig. 10. 30

The value of C should be

C= 1 = 56.174 p h

X Z
(d-kl)uOWnZw £°
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The good agreement between the m=asured and the calculated values in Fig. 10. 30
means the applicability of a combination of lumped and distributed elements, as well

as that of luniped network theory tc cascade connections.

10. 5. Antimetrical bandpass filters(n)

An experiment was made on the antimetrical BPF in Fig. 5.15. This is a simplest
example of a B- P. F. formed by the cascade of symmetrical lattice networks, one of

L only, and the other of C only.

(Network characteristics). The configuration of the network is like that in Fig. 10. 31,

and tre attenuation is given, from Eq. (5.20) as follows:

. 2, 2, 2 ]
9= T R K P I .

A#uz-ul. K = wz+u1, u1u2=1

(10. 101)

where wy and w, are such frequencies that give 3 db attenuation. The line constants are

_ AK _ /AK/]2 .
Wo— 1"1—2—‘9 k- m ’ d—l (10-102)

{(Approximate expression for the characteristic)

An approximate expression will be obtained that will be convenient to examine the char-

acteristics near the center frequency, when the band is narrow.

Let the center frequency be fo' so that

[¢?] g &

Consequently

Use the notation
w=14+(a0)% 1+ > (-{‘”—)
o

then, one has the approximation

Af
A=u-u=u-L=w( 2)
2 1 2 W {
2 o
K= uz’ful:Z
Hence the line constants should be
Af
e L~ 2 -
wo 1, k¥ = « - d=1
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As mentioned (NOTE), 5.3, (p” =1)/K P * j, when Ais small, so that

2 2 x Af/f 2 2
a1+ (Y 1+ o - Af
¢ (APJ) w—m 1+ (Z—{Z—)

[o]

ne

This approximotes a Wagner character, n = 1.

The loss due to line resistance may be obtained, in the same manner as in Eq. (10. 53)
for capacitance coupled B.P. F.,

_ 4a't, 2 4a' ¢ 2 40't .2
28 Af= o1t FD) T =1 omy—y va R R e ol

5

(Trial construction) The design conditions are:

(i) center frequency (fo) 150 MC
(ii}) nominal impedance (R) 120 ohms

(iii) bandwidth (2 Afz) + 320 KC

(1} From {o = 150 MC, one has

w =tan-£l—f—l=1, t = 25cm
o c

(2) From the bandwidth + 320 KC, one has

k%= wAf/f = wx320 KC/150 MC = 0.670x10"

k= 0.0819

2

(3) The line dimensions will be found froin

2 2
_ 1 - (h/ D) . 1+ (h/ D)
Wo = 1:3810g 4 —,17%— Wok = 138 log 14 757[5—

with R = W0 = 120 ohms and the above value of k. Take 2D= 34 mm, then one obtains
h=9.32 nim, 2d = 3.19 mm. The loss at the center frequency is calculated to be 0. 25
dB with the outer conductor of copper and the inner of brass, while the measured value
is 1 db. This discrepancy may be attributed to the increase of resistance due to bending

as well as to the disturbance of the electromagnetic field.

10. 6. Lowpass filters with Wagner characteristics.

'

The L. P. F. of Wagner characteristics of n= 3 or 5, TABLE 9.1, Fig. 9.2, may be
realized as in Fig. 10. 35, with cutoff frequency w, = 1.

To obtain line dimensions from line constants, one may use the following expressions,
which have corrections due to praximity effect. The following Fig- 10.36(b) is a chart

of numerical values obtained form the expressions.
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W_ = 30 cosh 'l{i—h—i;— -1} = 30 cosh '1{;-?:— - 1}'
W k= 30 cosh ! (1 *hzzf; Ny = 30 cosh ! (hz";l)2 v
1v2 Y,
. 1- (—;3-) 24. (Td)2 - 1.(%’3,?-+ (_;1_)2 2% 2_;_

T 52,42 ' 4 ° z 'Y R
1 (2)2 8y 1+ 2% - 227 e 27 ?

Fig. 10. 37 shows the experimental results made on a modified network of n = 3.
The measured value of a is smaller than the calculated, which is considered to be due
to stray capacitances arising from the disturbance of electromagnetic field at bends
and at the input and output terminals. These points are the greatest disadvantage of

this type of filters, one must pay good attention.

The attenuation peak moves if one shifts the short-circuit strip A, as could be ex-
pected from Sato's work(m). The short-circuit strip B would not be necessary in theory,
but without it the attenuation will go down steeply at some point. This suggests one
that there exists some amount of coupling between the lines before and after the short-
ciurcuit strip A. Thus one has to use the short-circuit strip B so as to make the line

from A to B act as a coaxial line.

Fig. 10. 38 shows the experimental results on the network n = 5. The measured
values of @ is lower than the calculated, perhaps by the same reason as above. (b) in
the figure shows various measured values during adjustments. (c) shows the dimensions
of the network, which were calculated from the expressions mentioned. It will be con-
venient for adinstments if one makes the top length and the position of short-circuit
adjustable. Measured values are close to the calculated, so that the Theory may be

considered to be correct.

The aims have been almost attained, that was described in the beginning of this
chapter, by the several examples of experiments described above. That is, the design
principles on coupled line filters may be considered to be correct at large. It has also
been confirmed that the network theory on lumped networks can be applied to distributed

ones without any modifications, except the transformation of frequency.
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Closing Remarks - Summary

Studies on coupled line filters have been presented, that have been made thus far.

The ingredients will be summarized.

Chapter 1. Equations of transmission in parallel multi-wire lines: The transmission
was studied in parallel multi-wire lines over ground. Three kinds of parameters,

i.e., the self characteristic impedance, symmetry coefficients, and coupling coeffi-
cients were introducsd to represent a characteristic impedance matrix, rendering

it convenient to derive characteristics of coupled line networks. As examples, a two-
wire line and a three-wire line have been cited, along with cases of particular construc-

tions.

Chapter 2. Simple networks made of coupled two wire lines: 28 kinds of networks may
be formed with a two-wire line, in which two of the four terminals are taken to be in-
put and output terminals, and the other two may be open circuited or ground-connected
or connected to the ground through another arbitrary ele nent. Their - twork para-
meters have been obtained. and their equivalent network representations are also
given in the form of combinations of coaxial elements. There are also given lumped
equivalent representations obtained by the use of Richards' frequency transformation.
Equivalent networks of coupled line networks nave been given systematically, and
hence the coupled line networks have become easy to understand. Among the 28 net-
works, the characteristics of 14 networkr have been examined, whose properties were
not yet known. Various kinds of networks have beer obtaincd including L.P., B.E.,
derived-m H. P., B.P. etc. There are also tabulated equivalent networks of those
made of unsymmetrical two-wire lines. Finally there are given the procedures of
transformation of coaxials filters into coupled line filters; especially the transforma-

tion of a coaxial loop is explained in an example.

Chapter 3. Simple symnietrical networks made of three-wire lines: the networks with
3-wire lines are studied, but limited oniy to symmetrical ones, because of complexity
1n structure. There are treated 23 networks, with 2 terminals, out of six, are taken
to be input and output, other 4 terminals open-circuited, ground-connected or connect-
ed to the ground through another element, all only for the case of symmetry. Of them
expressions of characteristics are obtained for L. P. F. and H. P. F. with attenuation
poles, 10 B.P.F.'s and 5 B. E. F.'s from their equivalent networks. It has been
pointed out specifically that B.P.F.'s and B. E.F.'s of narrow bands can be easily

made, which constitutes an advantage of coupled line filtera.

Chapter 4. Ladder-type networks: With equivalence relations in the preceding two

chapters in hand, there are presented transformations from ! :mped networks into
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coupled line networks. A procedure is shown where ladder networks, designed with
lumped parameters, are divided into appropriate sections, each of which is trans-
formed into coupled line type. The L type network may be built up with a double
coaxial elem«t, which is only a special case of a coupled two-wire line. Next, basic
T-networks are treated, and in combination with shunt elements, ladder networks

have been treated having Wager or Tchebycheff characteristics with or without attenua-
tion poles. Likewise, the basic H. P. T-network has been realized in a 3-wire line,
and ladder networks were cited on Wagner or Tchebycheff characteristics with or
without attenuation poles. It is also pointed out that B. E.F.'s and B.P. F.'s can
easily be deduced from L. P. F. and H. P. F., thus obtained, by means of frequency

transformation.

Chapter 5. Narrow band fiiters: Narrow band filters can be made, if one makes good
use of the coupling. First obtain a B. P. F. in lumped constants, and connect unit
coaxials at the input and output terminals, where the coaxials elements are so chosen
that they do not affect the amplitude characteristics. Divide the network inte appro-
priate sections, transform each section into coupled-line type. Thus the bandwidth is
coatrolled by the coupling coefficient, so that the bandwidth may be rnade narrow, by
making the coupling small. Examples are shown for the combinations of Wagner
networks n = 1 ~ 4 and unit coaxials. If one uses L or C as degenerate elements, in
place of unit coaxiale, one will have an alternate cascade of symmetrical la*tice of

L only and those of C only. Transform each lattice section into coupled-line type, and
the resulting network will have a bandwidth dependent on the coupling coefficient.
Values of elements are obtained for those derived from Wagner B.P.F., n= 1~ 3,

An example i8s given on a 3-element type B. P. F. niade in coupled-line type.

Chapter 6. Extraction of coupled two-wire lines: lf one increases the number of
wires in a line, tlie structure will become complicated and impractical, so that he
should rather consider cascade connections of coupled two-wire lines of simpler
structures. First obtain the network [Y-J resulting from the cascade connection
of an arbitrary network [Y'] and an arbitrary coupled two-wire line. Next, decom-
pose the given [Y] into a cascade of a coupled twc-wire line and a network R
It has been proved that if [Y] is positive real then [Y'] is also positive real and
preserves the property of a network. The writer points out that the extraction of a
coupled two-wire line is only an extension of the extraction of unit coaxial lines, pro-
posed by Richards,to four terminal netw ks, and it can be applied to multi-terminal
networks. Also a procedure is pr¢ josed on the decomposition of four-terminal

networks.

Chapter 7. Design of symmetrical networks: A design procedure is described, that

makes use of the extraction of coupled two-wire lines stated in the preceding chapter.
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Under the condition of symimetry, the expressions for [Y J . [Y'] and line co=x-
tants of the coupled two-wire line become simple, and thc synthesis of the symmetri-
cal network will be effected by the repetition of extracting coupled two-wire lines. If
one treats the matter with equivalent lattice networks, the extraction of a coupled
two-wire line may be replaced by the extraction of a coaxial line from each of two
network arms; the latter 1s simpler in calculation and also makes the comprehension
easier. Examples are given on the design by Q-functions, design of Wagner networks

and Tchebycheff networks with or without attenuation poles.

Chapter 8. Design of antimetrical networks: With the use of the condition of antimetry,
the expressions for the extraction of coupled two-wire lines becomes simpler. Again

it has been proved that if [Y] is antimetrical, the remaining network [_Y'] is also
antimetrical. As design examples, networks of Wagner or Tchebycheff characteristics,
with or without attenuation poles, are cited. Attention should be paid to the point that

if one repeats the extraction of two-wire lines, he may be encountered with a Brune
section, which cannot be realized by a two-wire line over ground. In such cases one
should consider another transformation. Inthis article, the problem is solved by the

combination of taking out a shunt element and the extraction of a coupled two-wire line.

Chapter 9. Frequency transformations: In distributed networks, the frequency trans-
tormation can not be applied to each network elements, because there are cascade
¢lements in the networks. The frequency transformation should be applied to the net-
work parameters themselves. The transformed frequency may be of the same form
except it is a tangent function. L.P.F. s and B. E.F.'s can be synthesized from the
transformed network parameters. Examples are shown on the design of Wagner net-
works. In cases of H.P.F. and B.P.F., simple extraction of coupled 2-wire lines
will lead to negative coupling coefficients. which still remains to be a problem.. For
comparison, an L. P. F. of n = 5 has been realized in 3 kinds of configurations, on

each of which is shown the variation of line constants with the cutoff frequency.

Chapter 10. Experimental Examples: liere are cited various experiments made on
coupled-line filters. (1) As an example of the network of a coupled two-wire line,
Chap. 2, experimental results are described on a bandstop filter, along with its

image parameters, effective attenuation, equivalent netwcrks, effect of line resist-
ance, and a design example. (2) A capacitance coupled B. P. F. is taken as an example
for Chap. 3, and experimental data are described in detail along with expressions of
characteristics, approximate expressions, approximate equivalent networks, effect

of resistance. This deserves also as an example for Chap. 5. (3) Two capacitance-
coupled B. P.F. were combined to form a wave separator, in like manner as in X-
termination. This is to confirm the applicability of lumped network theory into dis-

tributed n=tworks. There are described on the principle, six-terminal connection,
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input admittance, correcting admittance and experimental data. (4) A cascade of two
sections has been made, where each section consists cof an inductance-coupled B. P. F.
and a lumped capacitor. Here it is aimed to examine the problem of composite con-
nection and also the validity of mixed use of lumped and distributed elements. Des-
criptions are r..-le on the characteristics, approximate formulae, expressions for

two sections in cascade, design procedure and experimental data. This deserves as

an example for Chap. 3 and 5. (5) As an example of a narrow bandpass filter formed
by the cascade of symmetrical lattice in Chap. 5, an experiment is described on the
case n = l, with network characteristics and approximate formulae. (6) An experiment

was made on Wagner L.P.F. n= 3 and n = 5, as examples of Chap. 7 and Chap. 3.

The above experiments are all in good accord with theoretical calculatione, so

that one may consider the calculations, Chap. 2==9, are almost correct.

Thus here are arranged materials >{ study on coupled-line filters as systemati-
cally. as passible, but the study is not yet completed and there remain many problems.
With regard to synthesis, it has been proposed that the extraction of two-wire lines
may be a significant process, but it is not a key that solves all problems but is only
a method. One will notice that problems still remain open on the synthesis of H. P.F.
and B.P.F. As a whole. the significance is placed on the network Theory; the practi-
cability has only been mentioned at the description on experimental examples. It is
also important to obtain the relations among line dimensions and line constants, but
the description ie here limited only within necessity, because it is a protlem of the
electromagnetic field. The writer would like to mention that the capacitance-coupled
B.P.F. is used as a suppressing filter for the intermodulations of press car communi-

cation.

Acknowledgment - - - omitted.
September 1, 1961
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CAPTIONS:

Fig. 1. A parallel multi-wire line over ground

Fig. 2. A parallel 2-wire line over ground

Fig. 3. A symmetrical 2-wire line

Fig. 4. A parallel 3-wire line over ground

Fig. 5. A symmetrical 3-wire line

Fig. 6. A 3-wire line symimetrical with respect to the second wire
Fig. 2.1 A sy.nmetrical 2-wire line over ground

TABLE 2.1 Parameters of rimple networks with a two-wire line (I)
TABLE 2.2 ‘T%e same (II)

TABLE 2.3 The same (III)

TABLE 2.4 The same (IV)

TABLE 2.5 The same (V)

TABLE 2.6 Equivalent circuits (I)

TABLE 2.7 Equivalent circuits (II)

TABLE 2.8 Equivalent circuits (III)

TABLE 2.9 Equivalent circuits (IV)

TABLE 2.10 Equivalent circuits (V)

Fig. 2.2 A coaxial lowpass filter
TABLE 2.11 Lowpass filters
Fig. 2.3 Exaniples of lowpass characteristics
TABLE 2.12 Bandstop filters
Fig. 2.4 A bandstop filter (II)
TABLE 2.13 Highpass filters
Fig. 2.5 Characteristics of a highpass filter
TABLE 2.14 Derived-m type highpass filters
TABLE 2.15 Bandpass filters (I)
Z TABLE 2.16 Bandpass filters (II)
” Fig. 2.6 An example of bandpass characteristics
Fig. 2.7 Bandpass filter (III)
TABLE 2.17 Equivalent circuits in case of a unsymmetrical 2-wire line (I)
TABLE 2.18 The same (II)
TABLE 2.19 The same (III)
TABLE 2. 20 Equivalence transformation after Ozaki and [shii (rewritten)
TABLE 2.2]1 Transformation of networks with attenuation poles
Fig. 2.8 A unit loop and the equivalent circuit
TABLE 2. 22 Networks equivalent to a unit loop
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Fig. 2.9

Fig. 2.10 An exarniple of a network having a Brune section (numerical values
are of admittances)

Fig. 2.11 The same

Fig. 3.1 A 3-wire line over ground

Fig. 3.2 An equivalent lattice network

Fig. 3.3 Input and output terminals of a 3-wire line

Fig. 3.4 Equivalent circuit of Za

Fig. 3.5 Equivaient circuit of Zb

TABLE 3.1 Za and 2Zb of simple 3-wire line networks

TABLE 3.2 The same

TABLE 3.3 3.wire line networks

Fig. 3.6 Low pass network

Fig. 3.7 Highpass neiwork (I)

Fig. 3.8 Highpass network (II)

Fig. 3.9 Constant-k type highpass filter

Fig. 3.10 Examples of frequency characteristics

TABLE 3.4 Bandstop networks

TABLE 3.5 Capacitance-coupled narrow band filter

TABLE 3. 6 Inductance-coupled narrow band filter

TABLE 3.7 Wide band filters

Fig. 3.11 Bandstop network

Fig. 3.12

Fig. 3.13 Bandpass network

Fig. 4.1 L-type network

Fig. 4.2 Extraction of a two-wire line in L-type network

TABLE 4.1 Simple L -type networks and the equivalent coupled-line networks

TABLE 4.2 Basic lowpass network

Fig. 4.3 Wagner lowpassof n= 6

Fig. 4.4 Tchebycheff lowpass n = 6 with no attenuation poles

Fig. 4.5 A ladder network of two derived-m L. P. F.

Fig, 4.6 Tchebycheff L.P.F. with attenuation poles

Fig. 4.7 Attenuation characteristic

TABLE 4.3 Basic highpass network

Fig. 4.8 Wagner highpassof n= 6

Fig. 4.9 Tchebycheff highpass, n = 5, with no attenuation poles

TABLE 4.4 A highpass network with a transformer
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Fig. 4.10 Ladder Tchebycheff highpass network of n = 5 with attenuation poles

TABLE 4.5 Transformation of elements by frequency transformation

Fig. 4.11 Tchebycheff BEF with attenuation poles

Fig. 4.12 B. P.F. with no attenuation poles

Fig. 5.1 Wagner BPF, n = 3

Fig. 5.2 BPF of n = 3, with ideal transformers inserted in between

Fig. 5.3 A network with coaxial lines at the input and the output ends

Fig. 5.4 The network given in coupled line type

Fig. 5.5 That transformed from the one in Fig. 5.4

Fig. 5.6 That transformed from the one in Fig. 5.5

Fig. 5.7 Synthesis procedure of Wagner network, n= 1

Fig. 5.8 An alternative procedure of synthese n= 1

Fig. 5.9 Wagner BPF, n = 1, of parallel resonance type

Fig. 5.10 Wagner B.P.F., n= 2

Fig. 5.11 Wagner B.P.F., n= 3

Fig. 5.12 Alternative method, n= 3

Fig. 5.13 Wagner B.P.F., n= 4

Fig. 5.14 Wagner network with L and C added

Fig. 5.15 A network formed by adding LL and Cto a network of n = 1

Fig. 5.16 A network formed from a Wagner network, n = 2

Fig. 5.17 A network formed from a W ner network, n= 2

Fig. 5.18 A network derived from that of n = 2

Fig. 5.19(a) Relation between Aand A°K

Fig. 5.19(b) Relations among & and network elements

Fig. 5.20 A network with LL and C added to a Wagner network, n = 2

Fig. 5.21 A network with LL and C added to a Wagner network, nx= 3

Fig. 5.22(a) Relation between Aand A3K

Fig. 5.22(b) Relations among & and network elements

Fig- 5.22(c) Relations among A and line constants

Fig. 5.23 Three element bandpass filters

Fig. 5.24 Cbupled line network derived from a cascade of six 3-element bandpass
sections

Fig. 6.1 Coupled two-wire line

Fig. 6.2 Cascade adding of a coupled 2-wire line

Fig. 6.3 Extraction of a coupled 2-wire line

Fig. 6.4 Decomposition of Z

Fig. 6.5 Decomposition of EZJ and [Y]



126
PIBMRI-1041- 62

Fig. 7.1 Extraction of a two-wire line
Fig. 7.2 Faquivalence of the extraction of a coupled two-wire line and that of
coaxials in the equivalent lattice

TABLE 7.1(a) Two-terminal reactance functions and the bar-type networks
(short-circuited ends)

TABLE 7.1(b) I'wo-terminal reactance functions and the bar-type networks
{(open-circuited ends)

Fig. 7.3 TI'he network designed with Q functions and its characteristic

Fig. 7.4 An example of Wagner L.P.F., n= 5§

Fig. 7.5 Tchebycheff L.P.F., n= 5, with no attenuation poles

Fig. 7. 6 Tchebycheff L.P.F., n = 5, with attenuation poles

Fig. 8.1 A structure containing a Brune section

Fig. 8.2 A Brune section

Fig. 8.3 Wagner network, n= 4

Fig. 8.4 Tchebycheff network, n = 4, with no attenuation poles

Fig. 8.5 Tchebycheff network, n

Fig. 8.6 Wagner network, n= 6

4, with attenuation poles

Fig. 9.1 Structure of the reference L. P.F.
(a) symmetrical
(b) antimetricain= 4, 8, 12 ---
(c) antimetrical n = 6, 10, ---
TABLE 9.1(a) A,B,C and D of Wagner networks
TABLE 9.1(b) Za and Zb of Wagner networks
TABLE 9.1(c) Za and Zb after frequency transformation
TABLE 9.1(d) Wa and Wb of lowpass filters
Fig. 9.2 A general structure of lowpasa filters (symmetrical)
Fig. 9.3 Characteristics of symmetrical Wagner networks (L. P.)
TABLE 9.2(a) A, B, C and D of antimetrical Wagner networks
TABLE 9.2(b) Y parameters of antimetrical Wagner networks
TABLE 9.2(c) Y parameters after frequency transformation
Fig. 9.4 Wagner L.P.F., n= 2
Fig. 9.5 Wagner L.P.F., n= 4
Fig. 9.6 Characteristics of antimetric Wagner L.P.F.
TABLE 9.3(a) Za and Zb of symmetrical Wagner B.E.F.'s
Fig. 9.7 Symmetrical Wagner B.E. F.
TABLE 9. 3(b) Za and Zb of B. E. F.'s given in bar-type networks
Fig. 9.8 Frequency transformation of a shunt capacitance
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9.9 W.gner B.E.F., n= 4

9.10 Structuie of an L.P.F., n= 5. and the effect of w,
9.11 Alternative structure of the L. P.F., n = 5, and the effect of ©,
9.12 Another structure of the L.P.F., n= 5, and the effect of w,
10.1 Image characteristics of a B. E. F.

10, 2 Equivalent circuit of B. E. F.

10. 3 Equivalent circuit at w the attenuation pole

10. 4 Two-core cable

10. 5 Construction of the trial-made B. E. F.

10. 6 The attenuation characteristic of the trial-made B. E. F.

10. 7 A B.P. F. and its equivalent network

10. 8 Variation of image parameters with Q

10.9 Variation of effective attenuationa with 2

10.10 Approximate equivalent network near the center frequency

10. 11 Three-core cable and the approximate two-core cable

10.12 The structure of a trial-made B.P. ¥’

10.13 The attenuation character of the trial-made B.P. F.

measured

------ calculated

10. 14 Variation of center frequency with adjusting screw

The abscissa: travel of adjusting screw
10. 15 Variation of center frequency with temperature
10. 16 Six-terminal network
10. 17 Capacitance coupled narrow B.P. F.

Top: input, bottom: output
10. 18 Correspondence of the frequency axes
10.19Input admittances of the wave separator
10. 20Correcting network
10. 21 Variation of mismatch loss, at the center frequency, with a
10. 22 Variation of IP)

10. 23 Structure of the trial-made wave separator

with a

10. 24 The separating characteristics of the trial-made wave ‘separator

10. 25 Structure of B. P. F. and the equivalent network

10. 26 Cascade connection of symmetrical networks

10. 27 Variation of a with AF

10. 28 Structure of a 3-core cable

10. 29 Structure of trial-made B.P. F. .
10. 30 Attenuation Character of trial-made B. P. F.
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Fig. 10. 31 Antimetrical bandpass Filter
Fig. 10. 32 Two-core cable
Fig. 10. 33 Structure of trial-made network
Fig. 10.34 Attenuation character of trial-made network
Fig. 10.35 Wagner L.P.F. (w, = 1), n= 3or 5
Fig. 10. 36 Two-core cable
Fig. 10. 36(b) Relations among line constants and dimensions of a 2-core cable
Fig. 10.37 Trial-made Wagner LPF, n= 3
left top: input
left bottom: output
A, B: Short-circuit strip
-=-- calculated

—_0—— n.casured

~—-x—— when strip A is farther from the terminals
——.—— when strip A is nearer to the terminals
——A——— when strip B is absent
Fig. 10.38 Wagner L.P.F., n= 5

(a) attenuation characteristic
--- calculated
——0—— measured

{b) examples of characteristics happened to occur during adjustments

(c) structure of the trial-made network




